First results from the GPS atmosphere sounding experiment TOR aboard the TerraSAR-X satellite

Abstract. GPS radio occultation events observed between 24 July and 17 November 2008 by the IGOR occultation receiver aboard the TerraSAR-X satellite are processed and analyzed. The comparison of 15 327 refractivity profiles with collocated ECMWF data yield a mean bias between zero and −0.30 % at altitudes between 5 and 30 km. Standard deviations decrease from about 1.4 % at 5 km to about 0.6 % at 10 km altitude, however, increase significantly in the upper stratosphere. At low latitudes mean biases and standard deviations are larger, in particular in the lower troposphere. The results are consistent with 15 159 refractivity observations collected during the same time period by the BlackJack receiver aboard GRACE-A and processed by GFZ's operational processing system. The main difference between the two occultation instruments is the implementation of open-loop signal tracking in the IGOR (TerraSAR-X) receiver which improves the tropospheric penetration depth in terms of ray height by about 2 km compared to the conventional closed-loop data acquired by BlackJack (GRACE-A).

[1]  S. B. Healy,et al.  Forecast impact experiment with a constellation of GPS radio occultation receivers , 2008 .

[2]  G. Beyerle Carrier phase wind-up in GPS reflectometry , 2009 .

[3]  Anthony J. Mannucci,et al.  Lower troposphere refractivity bias in GPS occultation retrievals , 2003 .

[4]  J. Schofield,et al.  Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System , 1997 .

[5]  R. König,et al.  Rapid Science Orbits for CHAMP and GRACE Radio Occultation Data Analysis , 2010 .

[6]  Global gravity wave activity in the tropopause region from CHAMP radio occultation data , 2008 .

[7]  Rolf König,et al.  Recent Developments in CHAMP Orbit Determination at GFZ , 2005 .

[8]  Stefan Heise,et al.  Sounding of the topside ionosphere/plasmasphere based on GPS measurements from CHAMP: Initial results , 2002 .

[9]  Thomas P. Yunck,et al.  A History of GPS Sounding , 2000 .

[10]  Jens Wickert,et al.  Observing upper troposphere–lower stratosphere climate with radio occultation data from the CHAMP satellite , 2008 .

[11]  Per K. Enge,et al.  Global positioning system: signals, measurements, and performance [Book Review] , 2002, IEEE Aerospace and Electronic Systems Magazine.

[12]  M. Rennie,et al.  The impact of GPS radio occultation assimilation at the Met Office , 2010 .

[13]  W. I. Bertiger,et al.  Effects of antenna orientation on GPS carrier phase , 1992 .

[14]  H. H. Benzon,et al.  Full Spectrum Inversion of radio occultation signals , 2003 .

[15]  Jens Wickert,et al.  A global climatology of ionospheric irregularities derived from GPS radio occultation , 2008 .

[16]  Rolf Werninghaus,et al.  The TerraSAR-X Mission and System Design , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Giovanni Emilio Perona,et al.  GPS radio occultation on-board the OCEANSAT-2 mission: an indian (ISRO) - Italian (ASI) collaboration , 2006 .

[18]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[19]  David Miller,et al.  The TerraSAR-X Satellite , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[20]  M. Rothacher,et al.  Observations and simulations of receiver-induced refractivity biases in GPS radio occultation , 2005, physics/0502052.

[21]  Anthony J. Mannucci,et al.  Rising and setting GPS occultations by use of open‐loop tracking , 2009 .

[22]  Volker Schwieger,et al.  GPS radio occultation with CHAMP: Atmospheric profiling utilizing the space‐based single difference technique , 2002 .

[23]  Ying-Hwa Kuo,et al.  Observing the moist troposphere with radio occultation signals from COSMIC , 2007 .

[24]  Sergey Sokolovskiy,et al.  Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single- and double-difference atmospheric excess phase processing , 2010 .

[25]  Juha-Pekka Luntama,et al.  Prospects of the EPS GRAS Mission For Operational Atmospheric Applications , 2008 .

[26]  Sergey Sokolovskiy,et al.  Tracking tropospheric radio occultation signals from low Earth orbit , 2001 .

[27]  Anthony J. Mannucci,et al.  Super-refraction effects on GPS radio occultation refractivity in marine boundary layers , 2010 .

[28]  U. Foelsche,et al.  Atmospheric temperature change detection with GPS radio occultation 1995 to 2008 , 2009 .

[29]  A. Kliore,et al.  The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments , 1971 .

[30]  X. Zou,et al.  Analysis and validation of GPS/MET data in the neutral atmosphere , 1997 .

[31]  Christian Rocken,et al.  The COSMIC/FORMOSAT-3 Mission: Early Results , 2008 .

[32]  W. Bertiger,et al.  A technical description of atmospheric sounding by GPS occultation , 2002 .

[33]  R. König,et al.  Near-Real Time Satellite Orbit Determination for GPS Radio Occultation with CHAMP and GRACE , 2010 .

[34]  Anders Berg,et al.  Metop-GRAS in-orbit instrument performance , 2009 .

[35]  Rolf König,et al.  The Tracking, Occultation and Ranging (TOR) instrument onboard TerraSAR-X and on TanDEM-X , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[36]  Fei Wu,et al.  Thermal variability of the tropical tropopause region derived from GPS/MET observations , 2003 .

[37]  S. B. Healy,et al.  Monitoring twenty‐first century climate using GPS radio occultation bending angles , 2008 .

[38]  S. Sokolovskiy,et al.  On the uncertainty of radio occultation inversions in the lower troposphere , 2010 .

[39]  Larry J. Romans,et al.  Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment , 1998 .

[40]  Jens Wickert,et al.  Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures , 2010 .

[41]  Lennart Bengtsson,et al.  Advanced algorithms of inversion of GPS/MET satellite data and their application to reconstruction of temperature and humidity , 1996 .

[42]  A. von Engeln,et al.  Validation of operational GRAS radio occultation data , 2009 .

[43]  H. Benzon,et al.  Geometrical optics phase matching of radio occultation signals , 2004 .

[44]  Grzegorz Michalak,et al.  GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. , 2009 .

[45]  Christian Rocken,et al.  Optimal Noise Filtering for the Ionospheric Correction of GPS Radio Occultation Signals , 2009 .

[46]  S. B. Healy,et al.  Smoothing radio occultation bending angles above 40 km , 2001 .

[47]  M. Gorbunov,et al.  Analysis of wave fields by Fourier integral operators and their application for radio occultations , 2004 .

[48]  Rolf König,et al.  The Radio Occultation Experiment aboard CHAMP: Operational Data Analysis and Validation of Vertical Atmospheric Profiles , 2004 .

[49]  K. Hocke,et al.  Inversion of GPS meteorology data , 1997 .

[50]  G. Beyerle,et al.  Altitude range resolution of differential absorption lidar ozone profiles. , 1999, Applied optics.

[51]  Ying-Hwa Kuo,et al.  Assimilation of GPS radio occultation data for numerical weather prediction , 2000 .

[52]  C. K. Yuen,et al.  Digital Filters , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[53]  J. Wickert,et al.  Global monitoring of tropospheric water vapor with GPS radio occultation aboard CHAMP , 2006 .

[54]  Douglas Hunt,et al.  GPS profiling of the lower troposphere from space: Inversion and demodulation of the open‐loop radio occultation signals , 2006 .

[55]  Sergey Sokolovskiy,et al.  Statistical optimization approach for GPS/MET data inversion [presentation] , 1996 .

[56]  J. Wickert,et al.  GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique , 2004, physics/0409032.

[57]  M. Rothacher,et al.  A data archive of GPS navigation messages , 2009 .