Binary and quadriphase sequences with optimal autocorrelation properties: a survey
暂无分享,去创建一个
Hans D. Schotten | Hans-Dieter Lüke | Hafez Hadinejad-Mahram | H. Schotten | H. Hadinejad-Mahram | H. Lüke
[1] Dieter Jungnickel,et al. Difference Sets: An Introduction , 1999 .
[2] A Busboom,et al. Binary arrays with perfect odd-periodic autocorrelation. , 1997, Applied optics.
[3] Matthew G. Parker. Even Length Binary Sequence Families with Low Negaperiodic Autocorrelation , 2001, AAECC.
[4] Solomon W. Golomb,et al. Digital communications with space applications , 1964 .
[5] Hans Dieter Lüke. Almost-perfect polyphase sequences with small phase alphabet , 1997 .
[6] Alexander Pott,et al. Existence and nonexistence of almost-perfect autocorrelation sequences , 1995, IEEE Trans. Inf. Theory.
[7] M.B. Pursley,et al. Crosscorrelation properties of pseudorandom and related sequences , 1980, Proceedings of the IEEE.
[8] S. W. GOLOMB,et al. Generalized Barker sequences , 1965, IEEE Trans. Inf. Theory.
[9] Hans D. Schotten,et al. Coded aperture imaging with multiple measurements , 1997 .
[10] A Busboom,et al. Mismatched filtering of periodic and odd-periodic binary arrays. , 1998, Applied optics.
[11] Pingzhi Fan,et al. SEQUENCE DESIGN FOR COMMUNICATIONS APPLICATIONS , 1996 .
[13] Hans Dieter Lüke. BTP transform and perfect sequences with small phase alphabet , 1996 .
[14] H. D. Luke,et al. Sequences and arrays with perfect periodic correlation , 1988 .
[15] Wai Ho Mow. Best quadriphase codes up to length 24 , 1993 .
[16] H. D. Luke,et al. Binary odd-periodic complementary sequences , 1997, IEEE Trans. Inf. Theory.
[17] Philippe Langevin. Almost perfect binary functions , 2005, Applicable Algebra in Engineering, Communication and Computing.
[18] Tor Helleseth,et al. New construction for binary sequences of period pm-1 with Optimal autocorrelation using (z+1)d+azd+b , 2001, IEEE Trans. Inf. Theory.
[19] Hans D. Schotten. Optimum complementary sets and quadriphase sequences derived from q-ary m-sequences , 1997, Proceedings of IEEE International Symposium on Information Theory.
[20] Hans D. Schotten,et al. Odd-perfect, almost binary correlation sequences , 1995 .
[21] Rudolf Lide,et al. Finite fields , 1983 .
[22] Stephan Mertens,et al. On the ground states of the Bernasconi model , 1997 .
[23] Leopold Bömer,et al. Binary and biphase sequences and arrays with low periodic autocorrelation sidelobes , 1990, International Conference on Acoustics, Speech, and Signal Processing.
[24] H. D. Luke. Mismatched filtering of periodic quadriphase and 8-phase sequences , 2003 .
[25] A. Busboom,et al. Mismatched filtering of odd-periodic binary sequences , 1998 .
[26] Hans-Dieter Lüke. Binäre Folgen und Arrays mit optimalen ungeraden Autokorrela tionsfunktionen , 1994 .
[27] E E Fenimore,et al. New family of binary arrays for coded aperture imaging. , 1989, Applied optics.
[28] J. Lindner,et al. Binary sequences up to length 40 with best possible autocorrelation function , 1975 .
[29] Dilip V. Sarwate,et al. Quadriphase sequences for spread-spectrum multiple-access communication , 1984, IEEE Trans. Inf. Theory.
[30] Marcel J. E. Golay. Hybrid low autocorrelation sequences (Corresp.) , 1975, IEEE Trans. Inf. Theory.
[31] Bernhard Schmidt,et al. Cyclotomic integers and finite geometry , 1999 .
[32] Wai Ho Mow. A unified construction of perfect polyphase sequences , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.
[33] Cunsheng Ding,et al. New families of binary sequences with optimal three-level autocorrelation , 2001, IEEE Trans. Inf. Theory.
[34] L. D. Baumert. Cyclic Difference Sets , 1971 .
[35] J. W. Taylor,et al. Quadriphase code-a radar pulse compression signal with unique characteristics , 1987 .
[36] Hans D. Schotten,et al. Generalised Sidelnikov sequences with optimal autocorrelation properties , 2000 .
[37] H. D. Luke. Almost-perfect quadriphase sequences , 2001 .
[38] C. E. Lee. Perfect q-ary sequences from multiplicative characters over GF(p) , 1992 .
[39] T. Helleseth,et al. New Construction for Binary Sequences of Period with Optimal Autocorrelation Using , 2001 .