OH− ions-controlled synthesis and upconversion luminescence properties of NaYF4:Yb3+,Er3+ nanocrystals via oleic acid-assisted hydrothermal process

[1]  D. Gao,et al.  Hydrothermal synthesis of controllable size, morphology and optical properties of β-NaGdF4: Eu3+ microcrystals , 2016 .

[2]  S. Ohara,et al.  PEG and PVP assisted solvothermal synthesis of NaYF4:Yb3+/Er3+ up-conversion nanoparticles , 2016 .

[3]  J. Qiu,et al.  Effect of Ce3+ Concentration on the Luminescence Properties of Ce3+/Er3+Nb3+ Tri-Doped NaYF4 Nanocrystals. , 2016, Journal of nanoscience and nanotechnology.

[4]  W. Qin,et al.  Photocatalysis of NaYF4:Yb,Er/CdSe composites under 1560 nm laser excitation , 2016 .

[5]  Deming Liu,et al.  Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals , 2016, Nature Communications.

[6]  Mingmei Wu,et al.  Additives and solvents-induced phase and morphology modification of NaYF4 for improving up-conversion emission , 2016 .

[7]  Jianrong Xue,et al.  Formation mechanism and luminescence properties of nanostructured sodium yttrium fluoride corn sticks synthesized by precipitation transformation method , 2015 .

[8]  J. Qiu,et al.  Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications. , 2015, Chemical Society reviews.

[9]  Deping Wang,et al.  pH value manipulated phase transition, microstructure evolution and tunable upconversion luminescence in Yb(3+)-Er(3+) codoped LiYF4/YF3 nanoparticles. , 2015, Dalton transactions.

[10]  A. Govorov,et al.  Harvesting Lost Photons: Plasmon and Upconversion Enhanced Broadband Photocatalytic Activity in Core@Shell Microspheres Based on Lanthanide‐Doped NaYF4, TiO2, and Au , 2015 .

[11]  Kexun Li,et al.  Controlled synthesis and luminance properties of lanthanide-doped β-NaYF4 microcrystals , 2015 .

[12]  Chunhua Lu,et al.  Hexagonal NaYF4:Yb3+/Er3+ nano/micro-structures: Controlled hydrothermal synthesis and morphology-dependent upconversion luminescence , 2015 .

[13]  Hailong Qiu,et al.  Tuning the size and upconversion emission of NaYF4:Yb3+/Pr3+ nanoparticles through Yb3+ doping , 2014 .

[14]  Hairong Zheng,et al.  Luminescence investigation of Yb3+/Er3+ codoped single LiYF4 microparticle , 2014 .

[15]  Mingqing Wang,et al.  Shape-selective synthesis, characterization and upconversion improvement of Yb3+/Er3+ doped LiYF4 microphosphors through pH tuning , 2014 .

[16]  Jun Lin,et al.  Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. , 2014, Chemical reviews.

[17]  M. Yoshimura,et al.  Size-dependent upconversion luminescence and quenching mechanism of LiYF 4 : Er 3+ /Yb 3+ nanocrystals with oleate ligand adsorbed , 2013 .

[18]  Yan Wang,et al.  Influence of surfactants on the morphology, upconversion emission, and magnetic properties of β-NaGdF4:Yb3+,Ln3+ (Ln = Er, Tm, Ho). , 2013, Dalton transactions.

[19]  Kang Sun,et al.  Controllable synthesis of β-NaYF4:Yb,Er nanorods by potassium oleate as ligand , 2013, Colloid and Polymer Science.

[20]  Botao Wu,et al.  Ultrasensitive polarized up-conversion of Tm(3+)-Yb3+ doped β-NaYF4 single nanorod. , 2013, Nano letters.

[21]  Shufen Zhang,et al.  Modulation of the emission intensity and color output of NaYF4 : Yb3+,Er3+ nanocrystals by OH− , 2013 .

[22]  Jing Wang,et al.  Phase transition, size control and color tuning of NaREF4:Yb3+, Er3+ (RE = Y, Lu) nanocrystals. , 2013, Nanoscale.

[23]  Xiaomin Liu,et al.  Controlled synthesis, formation mechanism and upconversion luminescence of NaYF4: Yb, Er nano-/submicrocrystals via ionothermal approach , 2012 .

[24]  Jong Won Chung,et al.  Solvothermal synthesis and luminescence properties of NaYF4:Ln3+ (Eu3+, Tb3+, Yb3+/Er3+) nano- and microstructures , 2012 .

[25]  Maxwell J. Crossley,et al.  Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion , 2012 .

[26]  R. Yang,et al.  Citric acid-assisted hydrothermal synthesis of α-NaYF4:Yb3+,Tm3+ nanocrystals and their enhanced ultraviolet upconversion emissions , 2012 .

[27]  Ke Tao,et al.  Interaction Between Y3+ and Oleate Ions for the Cubic-to-Hexagonal Phase Transformation of NaYF4 Nanocrystals , 2012 .

[28]  Fei He,et al.  Self-assembled β-NaGdF4 microcrystals: hydrothermal synthesis, morphology evolution, and luminescence properties. , 2011, Inorganic chemistry.

[29]  Lian Li,et al.  Multicolor output and shape controlled synthesis of lanthanide-ion doped fluorides upconversion nanoparticles. , 2011, Dalton transactions.

[30]  X. Zhang,et al.  Efficient fluorescence emission and photon conversion of LaOF:Eu3+ nanocrystals , 2011 .

[31]  Xueyuan Chen,et al.  Upconversion nanoparticles in biological labeling, imaging, and therapy. , 2010, The Analyst.

[32]  C. S. Lim,et al.  Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping , 2010, Nature.

[33]  D. Zhao,et al.  Shape, size, and phase-controlled rare-Earth fluoride nanocrystals with optical up-conversion properties. , 2009, Chemistry.

[34]  Zhengquan Li,et al.  An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence , 2008, Nanotechnology.

[35]  Fan Zhang,et al.  Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. , 2007, Angewandte Chemie.

[36]  Xun Wang,et al.  Synthesis of NaYF4 Nanocrystals with Predictable Phase and Shape , 2007 .

[37]  Louis A. Cuccia,et al.  Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. , 2006, Journal of the American Chemical Society.

[38]  Qing Peng,et al.  A general strategy for nanocrystal synthesis , 2005, Nature.

[39]  Markus P. Hehlen,et al.  Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems , 2000 .