Nonparametric estimation of a class of smooth functions

The problem of recovering an analytic function in the class of bandlimited functions is studied. Estimation techniques derived from the Whittaker-Shannon cardinal expansion are introduced and their statistical properties are established This includes consistency and rate of convergence in the mean square error sense as well as asymptotic normality The estimators are of the kernel convolution type with the non-integrable kernel function sin (t)/πt. Both an ordinary kernel type regression estimate and a version based on binned data are considered.

[1]  Frank Stenger,et al.  Approximations via Whittaker's cardinal function , 1976 .

[2]  Stamatis Cambanis,et al.  Zakai’s Class of Bandlimited Functions and Processes: Its Characterization and Properties , 1976 .

[3]  Sophocles J. Orfanidis,et al.  Introduction to signal processing , 1995 .

[4]  J. R. Higgins,et al.  Five short stories about the cardinal series , 1985 .

[5]  A. Zayed Advances in Shannon's Sampling Theory , 1993 .

[6]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[7]  L. Devroye A Note on the Usefulness of Superkernels in Density Estimation , 1992 .

[8]  M. Pawlak,et al.  Kernel regression estimators for signal recovery , 1997 .

[9]  K. B. Davis,et al.  Mean Square Error Properties of Density Estimates , 1975 .

[10]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[11]  H. Müller On the asymptotic mean square error of L 1 Kernel estimates of smooth functions , 1987 .

[12]  Ulrich Stadtmüller,et al.  Recovering band-limited signals under noise , 1996, IEEE Trans. Inf. Theory.

[13]  David W. Scott,et al.  Smoothing by weighted averaging of rounded points , 1990 .

[14]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[15]  Peter Hall,et al.  The Influence of Rounding Errors on Some Nonparametric Estimators of a Density and its Derivatives , 1982 .

[16]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[17]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[18]  I. A. Ibragimov,et al.  Estimation of Distribution Density Belonging to a Class of Entire Functions , 1983 .

[19]  R. Marks Introduction to Shannon Sampling and Interpolation Theory , 1990 .

[20]  A. Ingham A Note on Fourier Transforms , 1934 .

[21]  R. L. Stens,et al.  Sampling Theory for not Necessarily Band-Limited Functions: A Historical Overview , 1992, SIAM Rev..

[22]  K. B. Davis Mean Integrated Square Error Properties of Density Estimates , 1977 .

[23]  W. Härdle Applied Nonparametric Regression , 1991 .

[24]  A. Papoulis Signal Analysis , 1977 .

[25]  Robert J. Marks,et al.  Advanced topics in Shannon sampling and interpolation theory , 1993 .

[26]  D. Donoho,et al.  Geometrizing Rates of Convergence, III , 1991 .

[27]  Ursula Scheben,et al.  Magnitude of the truncation error in sampling expansions of band-limited signals , 1982 .

[28]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[29]  I. Ibragimov,et al.  On density estimation in the view of Kolmogorov's ideas in approximation theory , 1990 .

[30]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .

[31]  H. Müller,et al.  On variance function estimation with quadratic forms , 1993 .