Survey of control performance in quantum information processing

There is a rich variety of physics underlying the fundamental gating operations for quantum information processing (QIP). A key aspect of a QIP system is how noise may enter during quantum operations and how suppressing or correcting its effects can best be addressed. Quantum control techniques have been developed to specifically address this effort, although a detailed classification of the compatibility of controls schemes with noise sources found in common quantum systems has not yet been performed. This work numerically examines the performance of modern control methods for suppressing decoherence in the presence of noise forms found in viable quantum systems. The noise-averaged process matrix for controlled one-qubit and two-qubit operations are calculated across noise found in systems driven by Markovian open quantum dynamics. Rather than aiming to describe the absolute best control scheme for a given physical circumstance, this work serves instead to classify quantum control behavior across a large class of noise forms so that opportunities for improving QIP performance may be identified.

[1]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[2]  K. R. Brown,et al.  Arbitrarily accurate composite pulse sequences (4 pages) , 2004 .

[3]  Michael J. Biercuk,et al.  Robustness of composite pulses to time-dependent control noise , 2014, 1402.5174.

[4]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[5]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .

[6]  Henry Stark,et al.  Probability, Random Processes, and Estimation Theory for Engineers , 1995 .

[7]  Kaveh Khodjasteh,et al.  Automated Synthesis of Dynamically Corrected Quantum Gates , 2012 .

[8]  Robert L. Kosut,et al.  PEET: a Matlab tool for estimating physical gate errors in quantum information processing systems , 2016, Quantum Information Processing.

[9]  Aram W. Harrow,et al.  Erratum: Arbitrarily accurate composite pulse sequences [Phys. Rev. A 70, 052318 (2004)] , 2005 .

[10]  Xuedong Hu,et al.  Charge-fluctuation-induced dephasing of exchange-coupled spin qubits. , 2006, Physical review letters.

[11]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[12]  Kae Nemoto,et al.  Requirements for fault-tolerant factoring on an atom-optics quantum computer , 2012, Nature Communications.

[13]  M. Lukin,et al.  Relaxation, dephasing, and quantum control of electron spins in double quantum dots , 2006, cond-mat/0602470.

[14]  John M. Martinis,et al.  Decoherence of a superconducting qubit due to bias noise , 2003 .

[15]  Kenneth R. Brown,et al.  Progress in Compensating Pulse Sequences for Quantum Computation , 2012, 1203.6392.

[16]  Herschel Rabitz,et al.  Topology of the quantum control landscape for observables. , 2009, The Journal of chemical physics.

[17]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[18]  Frederick W Strauch,et al.  Quantum logic gates for coupled superconducting phase qubits. , 2003, Physical review letters.

[19]  Daniel A. Lidar,et al.  Arbitrarily accurate dynamical control in open quantum systems. , 2009, Physical review letters.

[20]  John M. Martinis,et al.  Superconducting phase qubits , 2009, Quantum Inf. Process..

[21]  Kaveh Khodjasteh,et al.  Dynamically error-corrected gates for universal quantum computation. , 2008, Physical review letters.

[22]  Herschel Rabitz,et al.  Optimal control landscape for the generation of unitary transformations , 2008 .

[23]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[24]  Robert L. Kosut,et al.  Topology of optimally controlled quantum mechanical transition probability landscapes , 2006 .

[25]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[26]  G. J. Milburn,et al.  DECOHERENCE IN ION TRAPS DUE TO LASER INTENSITY AND PHASE FLUCTUATIONS , 1998 .

[27]  H. Rabitz,et al.  Landscape for optimal control of quantum-mechanical unitary transformations , 2005 .

[28]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[29]  Klaus Blaum,et al.  Collinear laser spectroscopy of atomic cadmium , 2015, 1507.03846.

[30]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[31]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[32]  Roderick E. Wasylishen,et al.  Signal-to-noise enhancement of NMR spectra of solids using multiple-pulse spin-echo experiments , 2005 .

[33]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[34]  Doreen Eichel Experimental Issues In Coherent Quantum State Manipulation Of Trapped Atomic Ions , 2016 .

[35]  A. Rothman,et al.  Exploring the level sets of quantum control landscapes (9 pages) , 2006 .

[36]  Matthew D. Grace,et al.  Characterization of control noise effects in optimal quantum unitary dynamics , 2014, 1405.5950.

[37]  Herschel Rabitz,et al.  Landscape of unitary transformations in controlled quantum dynamics , 2009 .

[38]  Yacine Chitour,et al.  Time-Optimal Synthesis for Left-Invariant Control Systems on SO(3) , 2005, SIAM J. Control. Optim..

[39]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[40]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[41]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[42]  H. Rabitz,et al.  Exploring the top and bottom of the quantum control landscape. , 2011, The Journal of chemical physics.

[43]  M. Saffman,et al.  Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms , 2005 .

[44]  Michael A. Nielsen,et al.  Quantum Computation and Quantum Information Theory , 2000 .

[45]  Tzvetan S. Metodi,et al.  Resource requirements for fault-tolerant quantum simulation: The ground state of the transverse Ising model , 2009 .

[46]  Christiane P. Koch,et al.  Training Schrödinger’s cat: quantum optimal control , 2015, 1508.00442.

[47]  Constantin Brif,et al.  Exploring the tradeoff between fidelity and time optimal control of quantum unitary transformations , 2012 .

[48]  W. A. Coish,et al.  Singlet-triplet decoherence due to nuclear spins in a double quantum dot , 2005, cond-mat/0506090.

[49]  Kaveh Khodjasteh,et al.  Dynamical Quantum Error Correction of Unitary Operations with Bounded Controls , 2009, 0906.0525.

[50]  L. F. Santos,et al.  Coherent control of quantum dynamics with sequences of unitary phase-kick pulses. , 2009, Annual review of physical chemistry.

[51]  S. Wimperis,et al.  Broadband, Narrowband, and Passband Composite Pulses for Use in Advanced NMR Experiments , 1994 .

[52]  Erik Lucero,et al.  1/f Flux noise in Josephson phase qubits. , 2007, Physical review letters.

[53]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[54]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.