Zur Charakterisierung und Berechnung von symmetrischen Kubaturformeln
暂无分享,去创建一个
[1] H. M. Möller,et al. Kubaturformeln mit minimaler Knotenzahl , 1976 .
[2] Interpolatorische Kubaturformeln und reelle Ideale , 1980 .
[3] Hans Joachim Schmid,et al. On the numerical solution of non-linear equation characterizing minimal cubature formulae , 1980, Computing.
[4] George E. Collins. The SAC-1 Polynomial GCD and Resultant System , 1972 .
[5] R. Franke. Obtaining cubatures for rectangles and other planar regions by using orthogonal polynomials , 1971 .
[6] T. N. L. Patterson,et al. Construction of Algebraic Cubature Rules Using Polynomial Ideal Theory , 1978 .
[7] George E. Collins,et al. The SAC-1 system: An introduction and survey , 1971, SYMSAC '71.
[8] Joseph F. Traub,et al. On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.
[9] I. P. Mysovskikh. On Chakalov's theorem☆ , 1975 .
[10] Philip Rabinowitz,et al. Perfectly symmetric two-dimensional integration formulas with minimal numbers of points , 1969 .
[11] George E. Collins,et al. The Calculation of Multivariate Polynomial Resultants , 1971, JACM.
[12] Robert Piessens,et al. Construction of cubature formulas of degree eleven for symmetric planar regions, using orthogonal polynomials , 1976 .
[13] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[14] Quadrature Formulas over Fully Symmetric Planar Regions , 1973 .
[15] Philip J. Davis. A Construction of Nonnegative Approximate Quadratures , 1967 .