Functional Maps Representation On Product Manifolds

We consider the tasks of representing, analysing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry of its own, which we exploit to define map operations in the spectral domain; we also derive relationships with other existing representations (soft maps and functional maps). To apply these ideas in practice, we discretize product manifolds and their Laplace–Beltrami operators, and we introduce localized spectral analysis of the product manifold as a novel tool for map processing. Our framework applies to maps defined between and across 2D and 3D shapes without requiring special adjustment, and it can be implemented efficiently with simple operations on sparse matrices.

[1]  Michael M. Bronstein,et al.  Localized Manifold Harmonics for Spectral Shape Analysis , 2017, Comput. Graph. Forum.

[2]  Daniel Cremers,et al.  Non‐Rigid Puzzles , 2016, Comput. Graph. Forum.

[3]  Vladimir G. Kim,et al.  Entropic metric alignment for correspondence problems , 2016, ACM Trans. Graph..

[4]  Alexander M. Bronstein,et al.  Deep Functional Maps: Structured Prediction for Dense Shape Correspondence , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[5]  Leonidas J. Guibas,et al.  Functional map networks for analyzing and exploring large shape collections , 2014, ACM Trans. Graph..

[6]  Klaus Hildebrandt,et al.  Fast Approximation of Laplace‐Beltrami Eigenproblems , 2018, Comput. Graph. Forum.

[7]  L. Tu An introduction to manifolds , 2007 .

[8]  Michael M. Bronstein,et al.  Kernel Functional Maps , 2018, Comput. Graph. Forum.

[9]  Yann Brenier,et al.  Extended Monge-Kantorovich Theory , 2003 .

[10]  Leonidas J. Guibas,et al.  Dirichlet Energy for Analysis and Synthesis of Soft Maps , 2013 .

[11]  Mirela Ben-Chen,et al.  Deblurring and Denoising of Maps between Shapes , 2017, Comput. Graph. Forum.

[12]  Tobias Gurdan Sparse Modeling of Intrinsic Correspondences , 2014 .

[13]  Davide Eynard,et al.  Coupled Functional Maps , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[14]  Facundo Mémoli,et al.  Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..

[15]  Maks Ovsjanikov,et al.  Improved Functional Mappings via Product Preservation , 2018, Comput. Graph. Forum.

[16]  Klaus Glashoff,et al.  Composition Operators, Matrix Representation, and the Finite Section Method: A Theoretical Framework for Maps between Shapes , 2017, ArXiv.

[18]  Maks Ovsjanikov,et al.  Adjoint Map Representation for Shape Analysis and Matching , 2017, Comput. Graph. Forum.

[19]  Leonidas J. Guibas,et al.  Computing and processing correspondences with functional maps , 2016, SIGGRAPH Courses.

[20]  M. Berger,et al.  Le Spectre d'une Variete Riemannienne , 1971 .

[21]  Daniel Cremers,et al.  Partial Functional Correspondence , 2017 .

[22]  Alexander M. Bronstein,et al.  Coupled quasi‐harmonic bases , 2012, Comput. Graph. Forum.

[23]  Leonidas J. Guibas,et al.  Soft Maps Between Surfaces , 2012, Comput. Graph. Forum.

[24]  Yoni Choukroun,et al.  Elliptic operator for shape analysis , 2016, ArXiv.

[25]  Daniel Cremers,et al.  Product Manifold Filter: Non-rigid Shape Correspondence via Kernel Density Estimation in the Product Space , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  R. Duffin Distributed and Lumped Networks , 1959 .

[27]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[28]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[29]  Daniel Cremers,et al.  Geometrically consistent elastic matching of 3D shapes: A linear programming solution , 2011, 2011 International Conference on Computer Vision.

[30]  Hugo Lavenant Harmonic mappings valued in the Wasserstein space , 2017, Journal of Functional Analysis.

[31]  Pierre Alliez,et al.  Variance-minimizing transport plans for inter-surface mapping , 2017, ACM Trans. Graph..

[32]  Daniel Cremers,et al.  Efficient Globally Optimal 2D-to-3D Deformable Shape Matching , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Karlheinz Gröchenig,et al.  Convergence Analysis of the Finite Section Method and Banach Algebras of Matrices , 2010 .

[34]  Nikos Paragios,et al.  Dense non-rigid surface registration using high-order graph matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[35]  Ron Kimmel,et al.  Geodesic Distance Descriptors , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  W. Imrich,et al.  Handbook of Product Graphs, Second Edition , 2011 .

[37]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[38]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[40]  Ron Kimmel,et al.  Spectral Generalized Multi-dimensional Scaling , 2013, International Journal of Computer Vision.

[41]  Daniel Cremers,et al.  Efficient Deformable Shape Correspondence via Kernel Matching , 2017, 2017 International Conference on 3D Vision (3DV).

[42]  Maks Ovsjanikov,et al.  Informative Descriptor Preservation via Commutativity for Shape Matching , 2017, Comput. Graph. Forum.

[43]  Michael M. Bronstein,et al.  MADMM: A Generic Algorithm for Non-smooth Optimization on Manifolds , 2015, ECCV.

[44]  Yoni Choukroun,et al.  Hamiltonian Operator for Spectral Shape Analysis , 2016, IEEE Transactions on Visualization and Computer Graphics.

[45]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[46]  Xavier Bresson,et al.  Functional correspondence by matrix completion , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Daniel Cremers,et al.  Consistent Partial Matching of Shape Collections via Sparse Modeling , 2017, Comput. Graph. Forum.

[48]  Andrea Torsello,et al.  Matching Deformable Objects in Clutter , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[49]  Dimitri P. Bertsekas,et al.  Network optimization : continuous and discrete models , 1998 .