The Adaptive Convexification Algorithm: A Feasible Point Method for Semi-Infinite Programming

We present a new numerical solution method for semi-infinite optimization problems. Its main idea is to adaptively construct convex relaxations of the lower level problem, replace the relaxed lower level problems equivalently by their Karush-Kuhn-Tucker conditions, and solve the resulting mathematical programs with complementarity constraints. This approximation produces feasible iterates for the original problem. The convex relaxations are constructed with ideas from the $\alpha$BB method of global optimization. The necessary upper bounds for second derivatives of functions on box domains can be determined using the techniques of interval arithmetic, where our algorithm already works if only one such bound is available for the problem. We show convergence of stationary points of the approximating problems to a stationary point of the original semi-infinite problem within arbitrarily given tolerances. Numerical examples from Chebyshev approximation and design centering illustrate the performance of the method.

[1]  R. P. Hettich,et al.  Semi-infinite programming: Conditions of optimality and applications , 1978 .

[2]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[3]  Georg J. Still,et al.  Semi-infinite programming models in robotics , 1991 .

[4]  Bintong Chen,et al.  A Non-Interior-Point Continuation Method for Linear Complementarity Problems , 1993, SIAM J. Matrix Anal. Appl..

[5]  E. Polak On the mathematical foundations of nondifferentiable optimization in engineering design , 1987 .

[6]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[7]  Paul I. Barton,et al.  Interval Methods for Semi-Infinite Programs , 2005, Comput. Optim. Appl..

[8]  Hubertus Th. Jongen,et al.  Nonlinear optimization: Characterization of structural stability , 1991, J. Glob. Optim..

[9]  Bruce H. Krogh,et al.  The acceleration radius: a global performance measure for robotic manipulators , 1988, IEEE J. Robotics Autom..

[10]  S. M. Robinson Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems , 1976 .

[11]  Oliver Stein,et al.  On generalized semi-infinite optimization and bilevel optimization , 2002, Eur. J. Oper. Res..

[12]  Reiner Horst,et al.  The Geometric Complementarity Problem and Transcending Stationarity in Global Optimization , 1990, Applied Geometry And Discrete Mathematics.

[13]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[14]  Rainer Hettich,et al.  Numerische Methoden der Approximation und semi-infiniten Optimierung , 1982 .

[15]  Lonnie Hamm,et al.  GLOBAL OPTIMIZATION METHODS , 2002 .

[16]  Jean-Jacques Strodiot,et al.  Computing a global optimal solution to a design centering problem , 1992, Math. Program..

[17]  Rembert Reemtsen,et al.  Numerical Methods for Semi-Infinite Programming: A Survey , 1998 .

[18]  Oliver Stein,et al.  Solving Semi-Infinite Optimization Problems with Interior Point Techniques , 2003, SIAM J. Control. Optim..

[19]  Paul I. Barton,et al.  Global solution of semi-infinite programs , 2004 .

[20]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[21]  A. Fischer A special newton-type optimization method , 1992 .

[22]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[23]  Olvi L. Mangasarian,et al.  Set Containment Characterization , 2002, J. Glob. Optim..

[24]  W. Wetterling,et al.  Definitheitsbedingungen für relative Extrema bei Optimierungs- und Approximationsaufgaben , 1970 .

[25]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[26]  A. Neumaier Interval methods for systems of equations , 1990 .

[27]  Sven Leyffer,et al.  Local Convergence of SQP Methods for Mathematical Programs with Equilibrium Constraints , 2006, SIAM J. Optim..

[28]  Bruno Brosowski,et al.  Parametric semi-infinite optimization , 1982 .

[29]  E. Polak An implementable algorithm for the optimal design centering, tolerancing, and tuning problem , 1982 .

[30]  Klaus Glashoff,et al.  Linear Optimization and Approximation , 1983 .

[31]  Oliver Stein,et al.  Bi-Level Strategies in Semi-Infinite Programming , 2003 .

[32]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization , 1990 .

[33]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[34]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[35]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[36]  Christodoulos A. Floudas,et al.  Research Challenges, Opportunities and Synergism in Systems Engineering and Computational Biology , 2005 .

[37]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[38]  Peter Gritzmann,et al.  On the complexity of some basic problems in computational convexity: I. Containment problems , 1994, Discret. Math..

[39]  R. Steele Optimization , 2005 .

[40]  Oliver Stein,et al.  On Convex Lower Level Problems in Generalized Semi-Infinite Optimization , 2001 .

[41]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[42]  J. Danskin The Theory of Max-Min and its Application to Weapons Allocation Problems , 1967 .

[43]  C. Floudas,et al.  Global optimization in the 21st century: Advances and challenges , 2005, Computers and Chemical Engineering.

[44]  Christodoulos A Floudas,et al.  Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..

[45]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[46]  Christodoulos A. Floudas,et al.  A New Class of Improved Convex Underestimators for Twice Continuously Differentiable Constrained NLPs , 2004, J. Glob. Optim..

[47]  Hubertus Th. Jongen,et al.  Semi-infinite optimization: Structure and stability of the feasible set , 1990 .

[48]  S. Scholtes,et al.  Exact Penalization of Mathematical Programs with Equilibrium Constraints , 1999 .

[49]  Oliver Stein,et al.  A semi-infinite approach to design centering , 2006 .

[50]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .