Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6.

Reducing the uncertainty in the past, present and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project - phase 6 (CMIP6) focusing on the Greenland and Antarctic Ice Sheets. In this paper, we describe the framework for ISMIP6 and its relationship to other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice sheet - climate models as well as standalone ice sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change.

[1]  D. Cavalieri,et al.  Arctic Sea Ice Variability and Trends, 1979-2006 , 2013 .

[2]  M. R. Johnson,et al.  Oceanographic conditions south of Berkner Island, beneath Filchner‐Ronne Ice Shelf, Antarctica , 2001 .

[3]  W. Lipscomb,et al.  Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part I: Model Evaluation and 1850–2005 Results , 2013 .

[4]  K. Taylor,et al.  Experimental and diagnostic protocol for the physical component of the CMIP6 Ocean Model Intercomparison Project (OMIP) , 2016 .

[5]  J. Gregory,et al.  Probabilistic parameterisation of the surface mass balance--elevation feedback in regional climate model simulations of the Greenland ice sheet , 2014 .

[6]  N. DiGirolamo,et al.  Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS , 2013 .

[7]  Gaël Durand,et al.  Full Stokes modeling of marine ice sheets: influence of the grid size , 2009, Annals of Glaciology.

[8]  M. R. van den Broeke,et al.  Partitioning Recent Greenland Mass Loss , 2009, Science.

[9]  Eric Rignot,et al.  Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise , 2011 .

[10]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[11]  Konrad Steffen,et al.  Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow , 2002, Science.

[12]  H. L. Miller,et al.  Global climate projections , 2007 .

[13]  David M. Holland,et al.  Sensitivity of 21st century sea level to ocean‐induced thinning of Pine Island Glacier, Antarctica , 2010 .

[14]  M. R. van den Broeke,et al.  Clouds enhance Greenland ice sheet meltwater runoff , 2016, Nature Communications.

[15]  S. Nowicki,et al.  A Characterization of Greenland Ice Sheet Surface Melt and Runoff in Contemporary Reanalyses and a Regional Climate Model , 2016, Front. Earth Sci..

[16]  W. Lipscomb,et al.  Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part II: Twenty-First-Century Changes , 2014 .

[17]  W. Lipscomb,et al.  A technique for generating consistent ice sheet initial conditions for coupled ice sheet/climate models , 2013 .

[18]  N. Wilson,et al.  Water exchange between the continental shelf and the cavity beneath Nioghalvfjerdsbræ (79 North Glacier) , 2015 .

[19]  H. Hellmer,et al.  A Multidisciplinary Perspective on Climate Model Evaluation For Antarctica , 2016 .

[20]  Jonathan M. Gregory,et al.  Elimination of the Greenland ice sheet in a high-CO2 climate , 2005 .

[21]  Patrick Heimbach,et al.  OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project , 2016 .

[22]  G. Hamilton,et al.  Characteristics of ocean waters reaching Greenland's glaciers , 2012, Annals of Glaciology.

[23]  M. R. van den Broeke,et al.  Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model , 2016, Climate Dynamics.

[24]  Uwe Mikolajewicz,et al.  Long-term ice sheet–climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model , 2008 .

[25]  Søren Rysgaard,et al.  Quantifying Energy and Mass Fluxes Controlling Godthåbsfjord Freshwater Input in a 5-km Simulation (1991–2012)*,+ , 2015 .

[26]  Michael Schulz,et al.  Information from paleoclimate archives , 2013 .

[27]  Daniel F. Martin,et al.  Experimental design for three interrelated Marine Ice-Sheet and Ocean Model Intercomparison Projects , 2015 .

[28]  David M. Holland,et al.  The Response of Ice Shelf Basal Melting to Variations in Ocean Temperature , 2008 .

[29]  Aixue Hu,et al.  Transient response of the MOC and climate to potential melting of the Greenland Ice Sheet in the 21st century , 2009 .

[30]  Helen Amanda Fricker,et al.  An Active Subglacial Water System in West Antarctica Mapped from Space , 2007, Science.

[31]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[32]  Konrad Steffen,et al.  Surface climatology of the Greenland Ice Sheet: Greenland Climate Network 1995–1999 , 2001 .

[33]  T. Lee,et al.  ECCO2: High Resolution Global Ocean and Sea Ice Data Synthesis , 2008 .

[34]  Ian M. Howat,et al.  A new bed elevation dataset for Greenland , 2012 .

[35]  Miren Vizcaino,et al.  Ice sheets as interactive components of Earth System Models: progress and challenges , 2014 .

[36]  Anne Mouchet,et al.  Impact of Greenland and Antarctic ice sheet interactions on climate sensitivity , 2011 .

[37]  Eric Rignot,et al.  Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland , 2013, Journal of Geophysical Research: Earth Surface.

[38]  Gaël Durand,et al.  Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison , 2013, Journal of Glaciology.

[39]  X. Fettweis,et al.  Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models , 2010 .

[40]  Timothy H. Dixon,et al.  Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation , 2016, Nature Communications.

[41]  M. Yoshimori,et al.  Sources of Spread in Multimodel Projections of the Greenland Ice Sheet Surface Mass Balance , 2012 .

[42]  Jens Hesselbjerg Christensen,et al.  Role of Model Initialisation for Projections of 21st Century Greenland Ice Sheet Mass Loss , 2014 .

[43]  B. Otto‐Bliesner,et al.  A multi-model assessment of last interglacial temperatures , 2012 .

[44]  Ian Joughin,et al.  Numerical modeling of ocean‐ice interactions under Pine Island Bay's ice shelf , 2007 .

[45]  E. Steig,et al.  Ice Age storm trajectories inferred from radar stratigraphy at Taylor Dome, Antarctica , 1998 .

[46]  X. Fettweis,et al.  Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance , 2015 .

[47]  E. Bueler,et al.  The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet , 2010 .

[48]  W. Collins,et al.  Global climate projections , 2007 .

[49]  K. Nisancioglu,et al.  Melting of Northern Greenland during the last interglaciation , 2011 .

[50]  Janet Sprintall,et al.  Southern Ocean mixed-layer depth from Argo float profiles , 2008 .

[51]  B. Scheuchl,et al.  Ice Flow of the Antarctic Ice Sheet , 2011, Science.

[52]  Wallace S. Broecker,et al.  Massive iceberg discharges as triggers for global climate change , 1994, Nature.

[53]  Jonathan L. Bamber,et al.  Impact of model physics on estimating the surface mass balance of the Greenland ice sheet , 2007 .

[54]  C. Cenedese,et al.  The Dynamics of Greenland's Glacial Fjords and Their Role in Climate. , 2015, Annual review of marine science.

[55]  F. Saito,et al.  The Cryosphere Results of the Marine Ice Sheet Model Intercomparison Project , 2012 .

[56]  X. Fettweis Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR , 2007 .

[57]  Gaël Durand,et al.  Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model , 2012 .

[58]  M. Broeke,et al.  Contemporary (1960–2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet , 2014, Surveys in Geophysics.

[59]  A. Payne,et al.  Retreat of Pine Island Glacier controlled by marine ice-sheet instability , 2014 .

[60]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[61]  A. Abe‐Ouchi,et al.  Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume , 2013, Nature.

[62]  A. Weaver,et al.  Meltwater Pulse 1A from Antarctica as a Trigger of the Bølling-Allerød Warm Interval , 2003, Science.

[63]  M. R. van den Broeke,et al.  Calving fluxes and basal melt rates of Antarctic ice shelves , 2013, Nature.

[64]  R. S. W. van de Wal,et al.  Coupled regional climate–ice-sheet simulation shows limited Greenland ice loss during the Eemian , 2013 .

[65]  Alexei G. Sankovski,et al.  Special report on emissions scenarios : a special report of Working group III of the Intergovernmental Panel on Climate Change , 2000 .

[66]  M. Morlighem,et al.  Dependence of century-scale projections of the Greenland ice sheet on its thermal regime , 2013 .

[67]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[68]  J. Gregory,et al.  Effect of uncertainty in surface mass balance-elevation feedback on projections of the future sea level contribution of the Greenland ice sheet , 2013 .

[69]  A. Abe‐Ouchi,et al.  SeaRISE experiments revisited: potential sources of spread in multi-model projections of the Greenland ice sheet , 2015 .

[70]  N. Mahowald,et al.  PMIP4-CMIP6:: the contribution of the Paleoclimate Modelling Intercomparison Project to CMIP6 , 2016 .

[71]  Jian Lu,et al.  High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6 , 2016 .

[72]  Myoung-Jong Noh,et al.  An improved mass budget for the Greenland ice sheet , 2013 .

[73]  R. Arthern,et al.  Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations , 2015 .

[74]  S. Jacobs,et al.  Rapid Bottom Melting Widespread near Antarctic Ice Sheet Grounding Lines , 2002, Science.

[75]  Fabien Gillet-Chaulet,et al.  Assimilation of Antarctic velocity observations provides evidence for uncharted pinning points , 2015 .

[76]  J. Jungclaus,et al.  Climate modification by future ice sheet changes and consequences for ice sheet mass balance , 2010 .

[77]  Donald J. Cavalieri,et al.  Antarctic sea ice variability and trends, 1979-2010 , 2012 .

[78]  X. Fettweis,et al.  Sensitivity of Greenland Ice Sheet Projections to Model Formulations , 2013, Journal of Glaciology.

[79]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[80]  Yan Zhao,et al.  Evaluation of climate models using palaeoclimatic data , 2012 .

[81]  Ralf Greve,et al.  Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates , 2012, Annals of Glaciology.

[82]  C. Tebaldi,et al.  Probabilistic 21st and 22nd century sea‐level projections at a global network of tide‐gauge sites , 2014 .

[83]  J. Key,et al.  A Satellite-Derived Climate-Quality Data Record of the Clear-Sky Surface Temperature of the Greenland Ice Sheet , 2012 .

[84]  Ola M. Johannessen,et al.  Analysis of merged SMMR‐SSMI time series of Arctic and Antarctic sea ice parameters 1978–1995 , 1997 .

[85]  Eric Rignot,et al.  Ice flux divergence anomalies on 79north Glacier, Greenland , 2011 .

[86]  V. Brovkin,et al.  Modeling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia , 2007 .

[87]  Mark R. Anderson,et al.  Passive microwave-derived spatial and temporal variations of summer melt on the Greenland ice sheet , 1993 .

[88]  H. Hellmer,et al.  Ocean/ice shelf interaction in the southern Weddell Sea: results of a regional numerical helium/neon simulation , 2007 .

[89]  David Pollard,et al.  Description of a hybrid ice sheet-shelf model, and application to Antarctica , 2012 .

[90]  S. S. Kristensen,et al.  A new Programme for Monitoring the Mass Loss of the Greenland Ice Sheet , 2007 .

[91]  E. Willerslev,et al.  Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900 , 2015, Nature.

[92]  H. Goosse,et al.  A parameterization of ice shelf-ocean interaction for climate models , 2003 .

[93]  D. Macayeal,et al.  Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes , 2013 .

[94]  Mariana Vertenstein,et al.  Implementation and Initial Evaluation of the Glimmer Community Ice Sheet Model in the Community Earth System Model , 2013 .

[95]  Eric Rignot,et al.  Coupling ice flow models of varying orders of complexity with the Tiling method , 2012, Journal of Glaciology.

[96]  Richard I. Cullather,et al.  Evaluation of the Surface Representation of the Greenland Ice Sheet in a General Circulation Model , 2014 .

[97]  M. Morlighem,et al.  A mass conservation approach for mapping glacier ice thickness , 2011, Geophysical Research Letters.

[98]  Brian C. O'Neill,et al.  The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 , 2016 .

[99]  S. Manabe,et al.  The Influence of Continental Ice Sheets on the Climate of an Ice Age , 1985 .

[100]  W. G. Strand,et al.  Relative outcomes of climate change mitigation related to global temperature versus sea-level rise , 2012 .

[101]  J. Christensen,et al.  Very high resolution regional climate model simulations over Greenland: Identifying added value , 2012 .

[102]  R. DeConto,et al.  Contribution of Antarctica to past and future sea-level rise , 2016, Nature.

[103]  N. Reeh,et al.  Parameterization of melt rate and surface temperature on the Greenland ice sheet , 1989 .

[104]  U. Mikolajewicz,et al.  Coupled simulations of Greenland Ice Sheet and climate change up to A.D. 2300 , 2015 .

[105]  Xavier Fettweis,et al.  Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR , 2012 .

[106]  Ian M. Howat,et al.  Greenland flow variability from ice-sheet-wide velocity mapping , 2010, Journal of Glaciology.

[107]  I. C. Rutt,et al.  Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change , 2010 .

[108]  Daniel F. Martin,et al.  Experimental design for three interrelated Marine Ice-Sheet and Ocean Model Intercomparison Projects , 2015 .

[109]  S. Jacobs,et al.  Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf , 2011 .

[110]  S. M. Marlais,et al.  An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I) , 1999 .

[111]  E. van Meijgaard,et al.  A new, high‐resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling , 2012 .

[112]  D. Pollard,et al.  Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP , 2012 .

[113]  G. König‐Langlo,et al.  Modelling snowdrift sublimation on an Antarctic ice shelf , 2010 .

[114]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[115]  Michel Rixen,et al.  WCRP COordinated Regional Downscaling EXperiment (CORDEX): A diagnostic MIP for CMIP6 , 2016 .

[116]  R. Moss,et al.  Climate model intercomparisons: Preparing for the next phase , 2014 .

[117]  Robert Raiswell,et al.  Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle : Implications for iron delivery to the oceans , 2006 .

[118]  A. Jenkins A Simple Model of the Ice Shelf–Ocean Boundary Layer and Current , 2016 .

[119]  Guðfinna Aðalgeirsdóttir,et al.  Hindcasting to measure ice sheet model sensitivity to initial states , 2012 .

[120]  S. Jacobs,et al.  An optimized estimate of glacial melt from the Ross Ice Shelf using noble gases, stable isotopes, and CFC transient tracers , 2009 .

[121]  Mauro Perego,et al.  Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise , 2013, Proceedings of the National Academy of Sciences.

[122]  Qiang Wang,et al.  Ice-shelf basal melting in a global finite-element sea-ice/ice-shelf/ocean model , 2012, Annals of Glaciology.

[123]  K. Lambeck,et al.  Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments , 2015 .

[124]  Alexander Robinson,et al.  Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial , 2010 .

[125]  Jason Lowe,et al.  Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models , 2012 .

[126]  Eric Rignot,et al.  Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica , 2013 .

[127]  J. Gregory,et al.  Ice-sheet contributions to future sea-level change , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[128]  I. Joughin,et al.  Melting and freezing beneath Filchner‐Ronne Ice Shelf, Antarctica , 2003 .

[129]  Eric Rignot,et al.  Deeply incised submarine glacial valleys beneath the Greenland ice sheet , 2014 .

[130]  D. Vaughan,et al.  Antarctic ice-sheet loss driven by basal melting of ice shelves , 2012, Nature.

[131]  Martin Truffer,et al.  Complex Greenland outlet glacier flow captured , 2016, Nature Communications.

[132]  William H. Lipscomb,et al.  Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project) , 2013, Journal of Glaciology.

[133]  M. Schulz,et al.  Last interglacial temperature evolution - a model inter-comparison , 2012 .

[134]  W. Lipscomb,et al.  The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations , 2016 .

[135]  B. Scheuchl,et al.  Ice-Shelf Melting Around Antarctica , 2013, Science.

[136]  Eric Rignot,et al.  Spatial patterns of basal drag inferred using control methods from a full‐Stokes and simpler models for Pine Island Glacier, West Antarctica , 2010 .

[137]  Patrick D. Nunn,et al.  Sea Level Change , 2013 .

[138]  X. Fettweis,et al.  Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers , 2012 .