A Scalable Cryo-CMOS Controller for the Wideband Frequency-Multiplexed Control of Spin Qubits and Transmons

Building a large-scale quantum computer requires the co-optimization of both the quantum bits (qubits) and their control electronics. By operating the CMOS control circuits at cryogenic temperatures (cryo-CMOS), and hence in close proximity to the cryogenic solid-state qubits, a compact quantum-computing system can be achieved, thus promising scalability to the large number of qubits required in a practical application. This work presents a cryo-CMOS microwave signal generator for frequency-multiplexed control of $4\times 32$ qubits (32 qubits per RF output). A digitally intensive architecture offering full programmability of phase, amplitude, and frequency of the output microwave pulses and a wideband RF front end operating from 2 to 20 GHz allow targeting both spin qubits and transmons. The controller comprises a qubit-phase-tracking direct digital synthesis (DDS) back end for coherent qubit control and a single-sideband (SSB) RF front end optimized for minimum leakage between the qubit channels. Fabricated in Intel 22-nm FinFET technology, it achieves a 48-dB SNR and 45-dB spurious-free dynamic range (SFDR) in a 1-GHz data bandwidth when operating at 3 K, thus enabling high-fidelity qubit control. By exploiting the on-chip 4096-instruction memory, the capability to translate quantum algorithms to microwave signals has been demonstrated by coherently controlling a spin qubit at both 14 and 18 GHz.

[1]  Michiel Steyaert,et al.  A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter , 2001 .

[2]  Brian Donovan,et al.  Hardware for dynamic quantum computing. , 2017, The Review of scientific instruments.

[3]  Guang-Can Guo,et al.  Semiconductor quantum computation , 2018, National science review.

[4]  K. Itoh,et al.  Operation of a silicon quantum processor unit cell above one kelvin , 2020, Nature.

[5]  Waleed Khalil,et al.  A 10-bit DC-20-GHz Multiple-Return-to-Zero DAC With >48-dB SFDR , 2017, IEEE Journal of Solid-State Circuits.

[6]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[7]  Edoardo Charbon,et al.  Designing a DDS-Based SoC for High-Fidelity Multi-Qubit Control , 2020, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  B. Parvais,et al.  Reliability and Variability of Advanced CMOS Devices at Cryogenic Temperatures , 2020, 2020 IEEE International Reliability Physics Symposium (IRPS).

[9]  Ali Esmailiyan,et al.  A Mixed-Signal Control Core for a Fully Integrated Semiconductor Quantum Computer System-on-Chip , 2019, ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC).

[10]  Yanjie Wang,et al.  A linear-in-dB analog baseband circuit for low power 60GHz receiver in standard 65nm CMOS , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[11]  Jian-Wei Pan,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[12]  Fu-Lung Hsueh,et al.  A Fully Integrated Bluetooth Low-Energy Transmitter in 28 nm CMOS With 36% System Efficiency at 3 dBm , 2016, IEEE Journal of Solid-State Circuits.

[13]  Edoardo Charbon,et al.  A Wideband Low-Power Cryogenic CMOS Circulator for Quantum Applications , 2020, IEEE Journal of Solid-State Circuits.

[14]  Marco Vigilante,et al.  On the Design of Wideband Transformer-Based Fourth Order Matching Networks for ${E}$ -Band Receivers in 28-nm CMOS , 2017, IEEE Journal of Solid-State Circuits.

[15]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[16]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[17]  B. Lanyon,et al.  Observation of entangled states of a fully-controlled 20 qubit system , 2017, 1711.11092.

[18]  Maud Vinet,et al.  19.2 A 110mK 295µW 28nm FDSOI CMOS Quantum Integrated Circuit with a 2.8GHz Excitation and nA Current Sensing of an On-Chip Double Quantum Dot , 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC).

[19]  Edoardo Charbon,et al.  Deep-Cryogenic Voltage References in 40-nm CMOS , 2018, IEEE Solid-State Circuits Letters.

[20]  Chi-Hung Lin,et al.  A 12 bit 2.9 GS/s DAC With IM3 $ ≪ -$60 dBc Beyond 1 GHz in 65 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.

[21]  J. C. Bardin,et al.  Cryogenic small-signal and noise performance of 32nm SOI CMOS , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[22]  Edoardo Charbon,et al.  Cryo-CMOS Circuits and Systems for Quantum Computing Applications , 2018, IEEE Journal of Solid-State Circuits.

[23]  Lieven M.K. Vandersypen Experimental quantum computation with nuclear spins in liquid solution , 2001 .

[24]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[25]  Edoardo Charbon,et al.  Impact of Classical Control Electronics on Qubit Fidelity , 2018, Physical Review Applied.

[26]  L. Tavian,et al.  LATEST DEVELOPMENTS IN CRYOGENICS AT CERN , 2005 .

[27]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[28]  Melanie Hartmann,et al.  Design Of Analog Cmos Integrated Circuits , 2016 .

[29]  Yu Lin,et al.  A 12 bit 2.9 GS/s DAC With IM3 $ ≪ -$60 dBc Beyond 1 GHz in 65 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.

[30]  S. Mudanai,et al.  22FFL: A high performance and ultra low power FinFET technology for mobile and RF applications , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[31]  T. Lehmann,et al.  Characterization of SOS-CMOS FETs at Low Temperatures for the Design of Integrated Circuits for Quantum Bit Control and Readout , 2010, IEEE Transactions on Electron Devices.

[32]  S. Tarucha,et al.  Electrically driven single-electron spin resonance in a slanting Zeeman field , 2008, 0805.1083.

[33]  Mats Eriksson,et al.  Quantum computing with semiconductor spins , 2019, Physics Today.

[34]  Edoardo Charbon,et al.  Characterization and Model Validation of Mismatch in Nanometer CMOS at Cryogenic Temperatures , 2018, 2018 48th European Solid-State Device Research Conference (ESSDERC).

[36]  Fabio Sebastiano,et al.  19.3 A 200dB FoM 4-to-5GHz Cryogenic Oscillator with an Automatic Common-Mode Resonance Calibration for Quantum Computing Applications , 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC).

[37]  Hartmut Neven,et al.  Design and Characterization of a 28-nm Bulk-CMOS Cryogenic Quantum Controller Dissipating Less Than 2 mW at 3 K , 2019, IEEE Journal of Solid-State Circuits.

[38]  Fabio Sebastiano,et al.  19.1 A Scalable Cryo-CMOS 2-to-20GHz Digitally Intensive Controller for 4×32 Frequency Multiplexed Spin Qubits/Transmons in 22nm FinFET Technology for Quantum Computers , 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC).

[39]  Steffen,et al.  Simultaneous soft pulses applied at nearby frequencies , 2000, Journal of magnetic resonance.

[40]  E. Charbon,et al.  Characterization and Modeling of Mismatch in Cryo-CMOS , 2020, IEEE Journal of the Electron Devices Society.

[41]  R. Ishihara,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2017, npj Quantum Information.

[42]  M. Veldhorst,et al.  Voltage References for the Ultra-Wide Temperature Range from 4.2K to 300K in 40-nm CMOS , 2019, ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC).

[43]  Edoardo Charbon,et al.  Characterization and Analysis of On-Chip Microwave Passive Components at Cryogenic Temperatures , 2020, IEEE Journal of the Electron Devices Society.

[44]  E. Charbon,et al.  Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures , 2018, IEEE Journal of the Electron Devices Society.

[45]  M. Veldhorst,et al.  Universal quantum logic in hot silicon qubits , 2019, Nature.

[46]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[47]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[48]  Edoardo Charbon,et al.  A co-design methodology for scalable quantum processors and their classical electronic interface , 2018, 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[49]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.