Activation-induced deoxycytidine deaminase: Structural basis for favoring WRC hot motif specificities unique among APOBEC family members.

[1]  T. Honjo,et al.  The novel activation-induced deoxycytidine deaminase (AID) mutants, AIDv and AIDvΔ15 are defective in SHM and CSR. , 2017, DNA repair.

[2]  Rommie E. Amaro,et al.  Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B , 2016, Nature Structural &Molecular Biology.

[3]  L. Pedersen,et al.  Structural analysis of the activation-induced deoxycytidine deaminase required in immunoglobulin diversification. , 2016, DNA repair.

[4]  D. Rueda,et al.  Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution , 2015, Nature Communications.

[5]  M. Goodman,et al.  A Mathematical Model for Scanning and Catalysis on Single-stranded DNA, Illustrated with Activation-induced Deoxycytidine Deaminase*♦ , 2013, The Journal of Biological Chemistry.

[6]  M. Goodman,et al.  A Biochemical Analysis Linking APOBEC3A to Disparate HIV-1 Restriction and Skin Cancer* , 2013, The Journal of Biological Chemistry.

[7]  Jason B. Nikas,et al.  APOBEC3B is an enzymatic source of mutation in breast cancer , 2013, Nature.

[8]  Huixin Xu,et al.  Biochemical Analysis of Hypermutation by the Deoxycytidine Deaminase APOBEC3A* , 2012, The Journal of Biological Chemistry.

[9]  Xiaojiang S. Chen,et al.  A Structural Basis for the Biochemical Behavior of Activation-induced Deoxycytidine Deaminase Class-switch Recombination-defective Hyper-IgM-2 Mutants* , 2012, The Journal of Biological Chemistry.

[10]  B. Ludewig,et al.  CD169+ macrophages take the bullet , 2011, Nature Immunology.

[11]  M. Goodman,et al.  Analysis of a Single-stranded DNA-scanning Process in Which Activation-induced Deoxycytidine Deaminase (AID) Deaminates C to U Haphazardly and Inefficiently to Ensure Mutational Diversity*♦ , 2011, The Journal of Biological Chemistry.

[12]  M. Carpenter,et al.  Determinants of sequence-specificity within human AID and APOBEC3G. , 2010, DNA repair.

[13]  M. Neuberger,et al.  Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID , 2010, The Journal of experimental medicine.

[14]  R. Maul,et al.  A Portable Hot Spot Recognition Loop Transfers Sequence Preferences from APOBEC Family Members to Activation-induced Cytidine Deaminase* , 2009, The Journal of Biological Chemistry.

[15]  A. Bergman,et al.  V-region mutation in vitro, in vivo, and in silico reveal the importance of the enzymatic properties of AID and the sequence environment , 2009, Proceedings of the National Academy of Sciences.

[16]  T. Honjo,et al.  Separate domains of AID are required for somatic hypermutation and class-switch recombination , 2004, Nature Immunology.

[17]  Reuben S Harris,et al.  Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. , 2004, Journal of molecular biology.

[18]  A. Fischer,et al.  AID mutant analyses indicate requirement for class-switch-specific cofactors , 2003, Nature Immunology.

[19]  Vasco M. Barreto,et al.  C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. , 2003, Molecular cell.

[20]  M. Goodman,et al.  Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation , 2003, Nature.