On the Solvability Complexity Index Hierarchy and Towers of Algorithms
暂无分享,去创建一个
Matthew J. Colbrook | Anders C. Hansen | Markus Seidel | Olavi Nevanlinna | Jonathan Ben-Artzi | O. Nevanlinna | A. Hansen | M. Seidel | Jonathan Ben-Artzi | Markus Seidel
[1] T. Hales. The Kepler conjecture , 1998, math/9811078.
[2] András Sütő,et al. The spectrum of a quasiperiodic Schrödinger operator , 1987 .
[3] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[4] K. L. Shepard,et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.
[5] Bernd Silbermann,et al. Analysis of Toeplitz Operators , 1991 .
[6] D. Damanik. Schrödinger operators with dynamically defined potentials , 2014, Ergodic Theory and Dynamical Systems.
[7] R. Tichy,et al. Topological algebras of functions of bounded variation I , 1989 .
[8] A. Böttcher. Pseudospectra and Singular Values of Large Convolution Operators , 1994 .
[9] A. Avila. Global theory of one-frequency Schrödinger operators , 2015 .
[10] Karlheinz Gröchenig,et al. Norm‐controlled inversion in smooth Banach algebras, I , 2012, J. Lond. Math. Soc..
[11] William Arveson. C*-Algebras and Numerical Linear Algebra , 1992 .
[12] C. Fefferman,et al. The Eigenvalue Sum of a One-Dimensional Potential , 1994 .
[13] Markus Seidel. Fredholm theory for band-dominated and related operators: a survey , 2013, 1307.1635.
[14] M. Duneau. Approximants of quasiperiodic structures generated by the inflation mapping , 1989 .
[15] Tobias Nipkow,et al. A FORMAL PROOF OF THE KEPLER CONJECTURE , 2015, Forum of Mathematics, Pi.
[16] T. Jacqmin,et al. Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential. , 2013, Physical review letters.
[17] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[18] Anders C. Hansen,et al. On the approximation of spectra of linear operators on Hilbert spaces , 2008 .
[19] A generalization of Gordon's theorem and applications to quasiperiodic Schr\ , 2000, math-ph/0005015.
[20] K. Novoselov. Nobel Lecture: Graphene: Materials in the Flatland , 2011 .
[21] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[22] P. Gaspard,et al. Topological Hofstadter insulators in a two-dimensional quasicrystal , 2014, 1412.0571.
[23] Wang,et al. Two-dimensional quasicrystal with eightfold rotational symmetry. , 1987, Physical review letters.
[24] Felipe Cucker. The Arithmetical Hierarchy over the Reals , 1992, J. Log. Comput..
[25] Srinivasa Varadhan,et al. FINITE APPROXIMATIONS TO QUANTUM SYSTEMS , 1994 .
[26] E. Davies,et al. Spectral Enclosures and Complex Resonances for General Self-Adjoint Operators , 1998 .
[27] Szegö Type Limit Theorems , 1996 .
[28] N. Aronszajn. The Rayleigh-Ritz and the Weinstein Methods for Approximation of Eigenvalues: II. Differential Operators. , 1948, Proceedings of the National Academy of Sciences of the United States of America.
[29] Carlos Tomei,et al. Toda flows with infinitely many variables , 1985 .
[30] Dorje C Brody,et al. Complex extension of quantum mechanics. , 2002, Physical review letters.
[31] C. Fefferman,et al. Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential. , 1993 .
[32] Sebastian Muller. Physical Properties Of Quasicrystals , 2016 .
[33] K. Shepard,et al. Hofstadter's butterfly in moire superlattices: A fractal quantum Hall effect , 2012, 1212.4783.
[34] C. McMullen. Braiding of the attractor and the failure of iterative algorithms , 1988 .
[35] W. Steurer. Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals , 2004 .
[36] David Gabai,et al. Minimum volume cusped hyperbolic three-manifolds , 2007, 0705.4325.
[37] E. Condon. The Theory of Groups and Quantum Mechanics , 1932 .
[38] C. Lubich. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .
[39] AF Embeddings and the Numerical Computation of Spectra in Irrational Rotation Algebras , 2003, math/0312315.
[40] Marco Marletta,et al. Neumann–Dirichlet maps and analysis of spectral pollution for non-self-adjoint elliptic PDEs with real essential spectrum , 2010 .
[41] C. Fefferman,et al. Eigenvalues and eigenfunctions of ordinary differential operators , 1992 .
[42] C. Fefferman,et al. On the Dirac and Schwinger Corrections to the Ground-State Energy of an Atom , 1994 .
[43] Improper filtrations for C*-algebras: spectra of unilateral tridiagonal operators , 1992, funct-an/9211003.
[44] Steffen Roch,et al. C* - Algebras and Numerical Analysis , 2000 .
[45] M. Bhargava,et al. Universal quadratic forms and the 290-Theorem , 2011 .
[46] C. Fefferman,et al. The Eigenvalue Sum for a Three-Dimensional Radial Potential , 1996 .
[47] J. Fröhlich,et al. Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .
[48] Svetlana Ya. Jitomirskaya. Metal-insulator transition for the almost Mathieu operator , 1999 .
[49] L. Trefethen,et al. Spectra and Pseudospectra , 2020 .
[50] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[51] E. Mark Gold,et al. Limiting recursion , 1965, Journal of Symbolic Logic.
[52] Bernd Silbermann,et al. The finite section method for TOEPLITZ operators on the quarter‐plane with piecewise continuous symbols , 1983 .
[53] Invariant Means and Finite Representation Theory of $c*$-Algebras , 2003, math/0304009.
[54] R. O. Gandy,et al. COMPUTABILITY IN ANALYSIS AND PHYSICS (Perspectives in Mathematical Logic) , 1991 .
[55] N. Aronszajn. Rayleigh-Ritz and A. Weinstein Methods for Approximation of Eigenvalues: I. Operations in a Hilbert Space. , 1948, Proceedings of the National Academy of Sciences of the United States of America.
[56] C. Fefferman,et al. On the energy of a large atom , 1990 .
[57] Richard P. Messmer,et al. Upper and lower bounds to eigenvalues , 1969 .
[58] E. Lieb,et al. Lower bound to the energy of complex atoms , 1975 .
[59] The finite section method for Moore-Penrose inversion of Toeplitz operators , 1994 .
[60] A. Böttcher. Infinite matrices and projection methods , 1995 .
[61] Victor W. Marek,et al. Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer , 2016, SAT.
[62] Steve Smale,et al. Complexity theory and numerical analysis , 1997, Acta Numerica.
[63] Topological entropy of free product automorphisms , 2000, math/0008127.
[64] Warwick Tucker,et al. Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .
[65] J. Schwinger. UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.
[66] J. Bourgain,et al. Absolutely continuous spectrum for 1D quasiperiodic operators , 2002 .
[67] M. Zworski. RESONANCES IN PHYSICS AND GEOMETRY , 1999 .
[68] S. Smale. The fundamental theorem of algebra and complexity theory , 1981 .
[69] Herman H. Goldstine,et al. The Jacobi Method for Real Symmetric Matrices , 1959, JACM.
[70] M. Zworski. Scattering resonances as viscosity limits , 2013, 1505.00721.
[71] Marco Marletta,et al. Eigenvalues in spectral gaps of differential operators , 2012 .
[72] A. Avila,et al. Almost localization and almost reducibility , 2008, 0805.1761.
[73] Anders C. Hansen,et al. On the Solvability Complexity Index, the n-pseudospectrum and approximations of spectra of operators , 2011 .
[74] Arieh Iserles,et al. On the singular values and eigenvalues of the Fox–Li and related operators , 2010 .
[75] Gerald Beer,et al. Topologies on Closed and Closed Convex Sets , 1993 .
[76] Carl M. Bender,et al. Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.
[77] Tosio Kato. Perturbation theory for linear operators , 1966 .
[78] Stephen Smale,et al. On the existence of generally convergent algorithms , 1986, J. Complex..
[79] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[80] J. Hubbard,et al. How to find all roots of complex polynomials by Newton’s method , 2001 .
[81] Giuseppe Mastroianni,et al. On the stabiity of collocation methods for Cauchy singular integral equations in weighted Lp spaces , 2010 .
[82] J. Bourgain,et al. Continuity of the Lyapunov Exponent for Quasiperiodic Operators with Analytic Potential , 2001 .
[83] H. Weinberger. Variational Methods for Eigenvalue Approximation , 1974 .
[84] J. Globevnik. Norm-constant analytic functions and equivalent norms , 1976 .
[85] Karlheinz Gröchenig,et al. Convergence Analysis of the Finite Section Method and Banach Algebras of Matrices , 2010 .
[86] Benjamin Naumann,et al. Classical Descriptive Set Theory , 2016 .
[87] E. Shargorodsky. On the limit behaviour of second order relative spectra of self-adjoint operators , 2012, 1203.4831.
[88] H. Helfgott. The ternary Goldbach conjecture is true , 2013, 1312.7748.
[89] G. Szegő. Beiträge zur Theorie der Toeplitzschen Formen , 1920 .
[90] C. McMullen. Families of Rational Maps and Iterative Root-Finding Algorithms , 1987 .
[91] C. McMullen,et al. Solving the quintic by iteration , 1989 .
[92] Steffen Roch,et al. Limit Operators And Their Applications In Operator Theory , 2004 .
[93] H. Mascarenhas,et al. Quasi-banded operators, convolutions with almost periodic or quasi-continuous data, and their approximations , 2014 .
[94] Branko Grünbaum,et al. Aperiodic tiles , 1992, Discret. Comput. Geom..
[95] L. Trefethen. Spectra and pseudospectra , 2005 .
[96] E. Schrödinger. A method of determining quantum-mechanical eigenvalues and eigenfunctions , 1940 .
[97] David R. Nelson,et al. Vortex pinning and non-Hermitian quantum mechanics , 1997 .
[98] B. Silbermann,et al. Finite Sections of Band-Dominated Operators: lp-Theory , 2008 .
[99] Marko Lindner,et al. Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method , 2006 .
[100] L. H. Eliasson,et al. Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation , 1992 .
[101] M. Zworski,et al. Asymptotic distribution of resonances for convex obstacles , 1999 .
[102] Marian Boykan Pour-El,et al. Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.
[103] J. Demmel,et al. The bidiagonal singular value decomposition and Hamiltonian mechanics: LAPACK working note No. 11 , 1989 .
[104] E. B. Davies. A hierarchical method for obtaining eigenvalue enclosures , 2000, Math. Comput..
[105] John W. Cahn,et al. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .
[106] Nelson,et al. Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.
[107] Christoph Ortner,et al. Electronic Density of States for Incommensurate Layers , 2016, Multiscale Model. Simul..
[108] W. Arveson. Discretized CCR algebras , 1992, funct-an/9211015.
[109] C. Fefferman. The N-body problem in quantum mechanics , 1986 .
[110] P. Anderson. Absence of Diffusion in Certain Random Lattices , 1958 .
[111] C. Fefferman,et al. The Density in a One-Dimensional Potential , 1994 .
[112] E. Davies,et al. LEVEL SETS OF THE RESOLVENT NORM OF A LINEAR OPERATOR REVISITED , 2014, 1408.2354.
[113] A. Avila,et al. The Ten Martini Problem , 2009 .
[114] Idempotent Semimodules,et al. Analysis of Operators on , 2007 .
[115] Nathanial P. Brown. Quasi-diagonality and the finite section method , 2007, Math. Comput..
[116] Charles Fefferman,et al. Interval Arithmetic in Quantum Mechanics , 1996 .
[117] Laurent Demanet,et al. Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation , 2006 .
[118] J. Hass,et al. Double bubbles minimize , 2000, math/0003157.
[119] R. King,et al. Beyond the quartic equation , 1996 .
[120] BERND SILBERMANN. Modified Finite Sections for Toeplitz Operators and Their Singular Values , 2003, SIAM J. Matrix Anal. Appl..
[121] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[122] L. SecoyTable. The Density in a Three-dimensional Radial Potential , 2022 .
[123] S. Smale. On the efficiency of algorithms of analysis , 1985 .
[124] Barry Simon,et al. Zeros of orthogonal polynomials on the real line , 2002, Journal of Approximation Theory.
[125] Anders C. Hansen,et al. Infinite-dimensional numerical linear algebra: theory and applications , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.