On the Solvability Complexity Index Hierarchy and Towers of Algorithms

This paper establishes some of the fundamental barriers in the theory of computations and finally settles the long-standing computational spectral problem. That is to determine the existence of algorithms that can compute spectra $\mathrm{sp}(A)$ of classes of bounded operators $A = \{a_{ij}\}_{i,j \in \mathbb{N}} \in \mathcal{B}(l^2(\mathbb{N}))$, given the matrix elements $\{a_{ij}\}_{i,j \in \mathbb{N}}$, that are sharp in the sense that they achieve the boundary of what a digital computer can achieve. Similarly, for a Schr\"odinger operator $H = -\triangle+V$, determine the existence of algorithms that can compute the spectrum $\mathrm{sp}(H)$ given point samples of the potential function $V$. In order to solve these problems, we establish the Solvability Complexity Index (SCI) hierarchy and provide a collection of new algorithms that allow for problems that were previously out of reach. The SCI is the smallest number of limits needed in the computation, yielding a classification hierarchy for all types of problems in computational mathematics that determines the boundaries of what computers can achieve in scientific computing. In addition, the SCI hierarchy provides classifications of computational problems that can be used in computer-assisted proofs. The SCI hierarchy captures many key computational issues in the history of mathematics including the insolvability of the quintic, Smale's problem on the existence of iterative generally convergent algorithm for polynomial root finding, the computational spectral problem, inverse problems, optimisation etc., and even mathematical logic (although this is not a paper on logic and computer science).

[1]  T. Hales The Kepler conjecture , 1998, math/9811078.

[2]  András Sütő,et al.  The spectrum of a quasiperiodic Schrödinger operator , 1987 .

[3]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[4]  K. L. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.

[5]  Bernd Silbermann,et al.  Analysis of Toeplitz Operators , 1991 .

[6]  D. Damanik Schrödinger operators with dynamically defined potentials , 2014, Ergodic Theory and Dynamical Systems.

[7]  R. Tichy,et al.  Topological algebras of functions of bounded variation I , 1989 .

[8]  A. Böttcher Pseudospectra and Singular Values of Large Convolution Operators , 1994 .

[9]  A. Avila Global theory of one-frequency Schrödinger operators , 2015 .

[10]  Karlheinz Gröchenig,et al.  Norm‐controlled inversion in smooth Banach algebras, I , 2012, J. Lond. Math. Soc..

[11]  William Arveson C*-Algebras and Numerical Linear Algebra , 1992 .

[12]  C. Fefferman,et al.  The Eigenvalue Sum of a One-Dimensional Potential , 1994 .

[13]  Markus Seidel Fredholm theory for band-dominated and related operators: a survey , 2013, 1307.1635.

[14]  M. Duneau Approximants of quasiperiodic structures generated by the inflation mapping , 1989 .

[15]  Tobias Nipkow,et al.  A FORMAL PROOF OF THE KEPLER CONJECTURE , 2015, Forum of Mathematics, Pi.

[16]  T. Jacqmin,et al.  Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential. , 2013, Physical review letters.

[17]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[18]  Anders C. Hansen,et al.  On the approximation of spectra of linear operators on Hilbert spaces , 2008 .

[19]  A generalization of Gordon's theorem and applications to quasiperiodic Schr\ , 2000, math-ph/0005015.

[20]  K. Novoselov Nobel Lecture: Graphene: Materials in the Flatland , 2011 .

[21]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[22]  P. Gaspard,et al.  Topological Hofstadter insulators in a two-dimensional quasicrystal , 2014, 1412.0571.

[23]  Wang,et al.  Two-dimensional quasicrystal with eightfold rotational symmetry. , 1987, Physical review letters.

[24]  Felipe Cucker The Arithmetical Hierarchy over the Reals , 1992, J. Log. Comput..

[25]  Srinivasa Varadhan,et al.  FINITE APPROXIMATIONS TO QUANTUM SYSTEMS , 1994 .

[26]  E. Davies,et al.  Spectral Enclosures and Complex Resonances for General Self-Adjoint Operators , 1998 .

[27]  Szegö Type Limit Theorems , 1996 .

[28]  N. Aronszajn The Rayleigh-Ritz and the Weinstein Methods for Approximation of Eigenvalues: II. Differential Operators. , 1948, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Carlos Tomei,et al.  Toda flows with infinitely many variables , 1985 .

[30]  Dorje C Brody,et al.  Complex extension of quantum mechanics. , 2002, Physical review letters.

[31]  C. Fefferman,et al.  Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential. , 1993 .

[32]  Sebastian Muller Physical Properties Of Quasicrystals , 2016 .

[33]  K. Shepard,et al.  Hofstadter's butterfly in moire superlattices: A fractal quantum Hall effect , 2012, 1212.4783.

[34]  C. McMullen Braiding of the attractor and the failure of iterative algorithms , 1988 .

[35]  W. Steurer Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals , 2004 .

[36]  David Gabai,et al.  Minimum volume cusped hyperbolic three-manifolds , 2007, 0705.4325.

[37]  E. Condon The Theory of Groups and Quantum Mechanics , 1932 .

[38]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[39]  AF Embeddings and the Numerical Computation of Spectra in Irrational Rotation Algebras , 2003, math/0312315.

[40]  Marco Marletta,et al.  Neumann–Dirichlet maps and analysis of spectral pollution for non-self-adjoint elliptic PDEs with real essential spectrum , 2010 .

[41]  C. Fefferman,et al.  Eigenvalues and eigenfunctions of ordinary differential operators , 1992 .

[42]  C. Fefferman,et al.  On the Dirac and Schwinger Corrections to the Ground-State Energy of an Atom , 1994 .

[43]  Improper filtrations for C*-algebras: spectra of unilateral tridiagonal operators , 1992, funct-an/9211003.

[44]  Steffen Roch,et al.  C* - Algebras and Numerical Analysis , 2000 .

[45]  M. Bhargava,et al.  Universal quadratic forms and the 290-Theorem , 2011 .

[46]  C. Fefferman,et al.  The Eigenvalue Sum for a Three-Dimensional Radial Potential , 1996 .

[47]  J. Fröhlich,et al.  Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .

[48]  Svetlana Ya. Jitomirskaya Metal-insulator transition for the almost Mathieu operator , 1999 .

[49]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[50]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[51]  E. Mark Gold,et al.  Limiting recursion , 1965, Journal of Symbolic Logic.

[52]  Bernd Silbermann,et al.  The finite section method for TOEPLITZ operators on the quarter‐plane with piecewise continuous symbols , 1983 .

[53]  Invariant Means and Finite Representation Theory of $c*$-Algebras , 2003, math/0304009.

[54]  R. O. Gandy,et al.  COMPUTABILITY IN ANALYSIS AND PHYSICS (Perspectives in Mathematical Logic) , 1991 .

[55]  N. Aronszajn Rayleigh-Ritz and A. Weinstein Methods for Approximation of Eigenvalues: I. Operations in a Hilbert Space. , 1948, Proceedings of the National Academy of Sciences of the United States of America.

[56]  C. Fefferman,et al.  On the energy of a large atom , 1990 .

[57]  Richard P. Messmer,et al.  Upper and lower bounds to eigenvalues , 1969 .

[58]  E. Lieb,et al.  Lower bound to the energy of complex atoms , 1975 .

[59]  The finite section method for Moore-Penrose inversion of Toeplitz operators , 1994 .

[60]  A. Böttcher Infinite matrices and projection methods , 1995 .

[61]  Victor W. Marek,et al.  Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer , 2016, SAT.

[62]  Steve Smale,et al.  Complexity theory and numerical analysis , 1997, Acta Numerica.

[63]  Topological entropy of free product automorphisms , 2000, math/0008127.

[64]  Warwick Tucker,et al.  Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .

[65]  J. Schwinger UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J. Bourgain,et al.  Absolutely continuous spectrum for 1D quasiperiodic operators , 2002 .

[67]  M. Zworski RESONANCES IN PHYSICS AND GEOMETRY , 1999 .

[68]  S. Smale The fundamental theorem of algebra and complexity theory , 1981 .

[69]  Herman H. Goldstine,et al.  The Jacobi Method for Real Symmetric Matrices , 1959, JACM.

[70]  M. Zworski Scattering resonances as viscosity limits , 2013, 1505.00721.

[71]  Marco Marletta,et al.  Eigenvalues in spectral gaps of differential operators , 2012 .

[72]  A. Avila,et al.  Almost localization and almost reducibility , 2008, 0805.1761.

[73]  Anders C. Hansen,et al.  On the Solvability Complexity Index, the n-pseudospectrum and approximations of spectra of operators , 2011 .

[74]  Arieh Iserles,et al.  On the singular values and eigenvalues of the Fox–Li and related operators , 2010 .

[75]  Gerald Beer,et al.  Topologies on Closed and Closed Convex Sets , 1993 .

[76]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[77]  Tosio Kato Perturbation theory for linear operators , 1966 .

[78]  Stephen Smale,et al.  On the existence of generally convergent algorithms , 1986, J. Complex..

[79]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[80]  J. Hubbard,et al.  How to find all roots of complex polynomials by Newton’s method , 2001 .

[81]  Giuseppe Mastroianni,et al.  On the stabiity of collocation methods for Cauchy singular integral equations in weighted Lp spaces , 2010 .

[82]  J. Bourgain,et al.  Continuity of the Lyapunov Exponent for Quasiperiodic Operators with Analytic Potential , 2001 .

[83]  H. Weinberger Variational Methods for Eigenvalue Approximation , 1974 .

[84]  J. Globevnik Norm-constant analytic functions and equivalent norms , 1976 .

[85]  Karlheinz Gröchenig,et al.  Convergence Analysis of the Finite Section Method and Banach Algebras of Matrices , 2010 .

[86]  Benjamin Naumann,et al.  Classical Descriptive Set Theory , 2016 .

[87]  E. Shargorodsky On the limit behaviour of second order relative spectra of self-adjoint operators , 2012, 1203.4831.

[88]  H. Helfgott The ternary Goldbach conjecture is true , 2013, 1312.7748.

[89]  G. Szegő Beiträge zur Theorie der Toeplitzschen Formen , 1920 .

[90]  C. McMullen Families of Rational Maps and Iterative Root-Finding Algorithms , 1987 .

[91]  C. McMullen,et al.  Solving the quintic by iteration , 1989 .

[92]  Steffen Roch,et al.  Limit Operators And Their Applications In Operator Theory , 2004 .

[93]  H. Mascarenhas,et al.  Quasi-banded operators, convolutions with almost periodic or quasi-continuous data, and their approximations , 2014 .

[94]  Branko Grünbaum,et al.  Aperiodic tiles , 1992, Discret. Comput. Geom..

[95]  L. Trefethen Spectra and pseudospectra , 2005 .

[96]  E. Schrödinger A method of determining quantum-mechanical eigenvalues and eigenfunctions , 1940 .

[97]  David R. Nelson,et al.  Vortex pinning and non-Hermitian quantum mechanics , 1997 .

[98]  B. Silbermann,et al.  Finite Sections of Band-Dominated Operators: lp-Theory , 2008 .

[99]  Marko Lindner,et al.  Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method , 2006 .

[100]  L. H. Eliasson,et al.  Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation , 1992 .

[101]  M. Zworski,et al.  Asymptotic distribution of resonances for convex obstacles , 1999 .

[102]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[103]  J. Demmel,et al.  The bidiagonal singular value decomposition and Hamiltonian mechanics: LAPACK working note No. 11 , 1989 .

[104]  E. B. Davies A hierarchical method for obtaining eigenvalue enclosures , 2000, Math. Comput..

[105]  John W. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[106]  Nelson,et al.  Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.

[107]  Christoph Ortner,et al.  Electronic Density of States for Incommensurate Layers , 2016, Multiscale Model. Simul..

[108]  W. Arveson Discretized CCR algebras , 1992, funct-an/9211015.

[109]  C. Fefferman The N-body problem in quantum mechanics , 1986 .

[110]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[111]  C. Fefferman,et al.  The Density in a One-Dimensional Potential , 1994 .

[112]  E. Davies,et al.  LEVEL SETS OF THE RESOLVENT NORM OF A LINEAR OPERATOR REVISITED , 2014, 1408.2354.

[113]  A. Avila,et al.  The Ten Martini Problem , 2009 .

[114]  Idempotent Semimodules,et al.  Analysis of Operators on , 2007 .

[115]  Nathanial P. Brown Quasi-diagonality and the finite section method , 2007, Math. Comput..

[116]  Charles Fefferman,et al.  Interval Arithmetic in Quantum Mechanics , 1996 .

[117]  Laurent Demanet,et al.  Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation , 2006 .

[118]  J. Hass,et al.  Double bubbles minimize , 2000, math/0003157.

[119]  R. King,et al.  Beyond the quartic equation , 1996 .

[120]  BERND SILBERMANN Modified Finite Sections for Toeplitz Operators and Their Singular Values , 2003, SIAM J. Matrix Anal. Appl..

[121]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[122]  L. SecoyTable The Density in a Three-dimensional Radial Potential , 2022 .

[123]  S. Smale On the efficiency of algorithms of analysis , 1985 .

[124]  Barry Simon,et al.  Zeros of orthogonal polynomials on the real line , 2002, Journal of Approximation Theory.

[125]  Anders C. Hansen,et al.  Infinite-dimensional numerical linear algebra: theory and applications , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.