Learnt Real‐time Meshless Simulation

We present a new real‐time approach to simulate deformable objects using a learnt statistical model to achieve a high degree of realism. Our approach improves upon state‐of‐the‐art interactive shape‐matching meshless simulation methods by not only capturing important nuances of an object's kinematics but also of its dynamic texture variation. We are able to achieve this in an automated pipeline from data capture to simulation. Our system allows for the capture of idiosyncratic characteristics of an object's dynamics which for many simulations (e.g. facial animation) is essential. We allow for the plausible simulation of mechanically complex objects without knowledge of their inner workings. The main idea of our approach is to use a flexible statistical model to achieve a geometrically‐driven simulation that allows for arbitrarily complex yet easily learned deformations while at the same time preserving the desirable properties (stability, speed and memory efficiency) of current shape‐matching simulation systems. The principal advantage of our approach is the ease with which a pseudo‐mechanical model can be learned from 3D scanner data to yield realistic animation. We present examples of non‐trivial biomechanical objects simulated on a desktop machine in real‐time, demonstrating superior realism over current geometrically motivated simulation techniques.

[1]  Jessica K. Hodgins,et al.  Capturing and animating skin deformation in human motion , 2006, SIGGRAPH '06.

[2]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[3]  Stephen R. Marsland,et al.  Groupwise Non-Rigid Registration: The Minimum Description Length Approach , 2004, BMVC.

[4]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[5]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.

[6]  Christer Ericson,et al.  Real-Time Collision Detection , 2004 .

[7]  Matthias Zwicker,et al.  Mesh-based inverse kinematics , 2005, ACM Trans. Graph..

[8]  Szymon Rusinkiewicz,et al.  Global non-rigid alignment of 3-D scans , 2007, ACM Trans. Graph..

[9]  Markus H. Gross,et al.  Fast adaptive shape matching deformations , 2008, SCA '08.

[10]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, SIGGRAPH 2004.

[11]  Stefan Marks,et al.  An investigation of meshless deformation for fast soft tissue simulation in virtual surgery applications , 2007 .

[12]  Christopher J. Taylor,et al.  Statistical models of shape - optimisation and evaluation , 2008 .

[13]  Jessica K. Hodgins,et al.  Capturing and animating skin deformation in human motion , 2006, SIGGRAPH 2006.

[14]  Wayne E. Carlson,et al.  Shape transformation for polyhedral objects , 1992, SIGGRAPH.

[15]  Markus H. Gross,et al.  Meshless deformations based on shape matching , 2005, ACM Trans. Graph..

[16]  Takeo Igarashi,et al.  Real-time example-based elastic deformation , 2012, SCA '12.

[17]  Ron Kimmel,et al.  Texture Mapping Using Surface Flattening via Multidimensional Scaling , 2002, IEEE Trans. Vis. Comput. Graph..

[18]  Markus H. Gross,et al.  Contact Handling for Deformable Point-Based Objects , 2004, VMV.

[19]  Szymon Rusinkiewicz,et al.  Global non-rigid alignment of 3-D scans , 2007, SIGGRAPH 2007.

[20]  Timothy F. Cootes,et al.  Combining point distribution models with shape models based on finite element analysis , 1994, Image Vis. Comput..

[21]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[22]  Doug L. James,et al.  FastLSM: fast lattice shape matching for robust real-time deformation , 2007, SIGGRAPH 2007.

[23]  Dinesh K. Pai,et al.  EigenSkin: real time large deformation character skinning in hardware , 2002, SCA '02.

[24]  Timothy F. Cootes,et al.  Combining Point Distribution Models with Shape Models Based on Finite Element Analysis , 1994, BMVC.

[25]  J. Gower Generalized procrustes analysis , 1975 .

[26]  Leonidas J. Guibas,et al.  Robust single-view geometry and motion reconstruction , 2009, ACM Trans. Graph..

[27]  Kirill A. Sidorov,et al.  An efficient stochastic approach to groupwise non-rigid image registration , 2009, CVPR.

[28]  Robert B. Fisher,et al.  A Comparison of Four Algorithms for Estimating 3-D Rigid Transformations , 1995, BMVC.

[29]  Hong Qin,et al.  Real-time meshless deformation: Collision Detection and Deformable Objects , 2005 .

[30]  Doug L. James,et al.  FastLSM: fast lattice shape matching for robust real-time deformation , 2007, ACM Trans. Graph..

[31]  Gabriel Zachmann,et al.  Collision Detection for Deformable Objects , 2004, Comput. Graph. Forum.

[32]  Matthew Turk,et al.  A Morphable Model For The Synthesis Of 3D Faces , 1999, SIGGRAPH.

[33]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[34]  Timothy F. Cootes,et al.  Statistical models of appearance for computer vision , 1999 .

[35]  Hong Qin,et al.  Real‐time meshless deformation , 2005, Comput. Animat. Virtual Worlds.

[36]  Aaron Hertzmann,et al.  Style machines , 2000, SIGGRAPH 2000.

[37]  N. Higham Computing the polar decomposition with applications , 1986 .

[38]  Christopher J. Taylor,et al.  GROUP-WISE CORRESPONDENCE OF SURFACES USING NON-PARAMETRIC REGULARISATION AND SHAPE IMAGES , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[39]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[40]  Jovan Popović,et al.  Mesh-based inverse kinematics , 2005, SIGGRAPH 2005.

[41]  Christopher J. Taylor,et al.  Statistical Models of Shape and Appearance , 2008 .

[42]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[43]  Marc Alexa,et al.  Representing Animations by Principal Components , 2000, Comput. Graph. Forum.