High-resolution e-beam repair for nanoimprint templates

UV nanoimprint lithography (UV-NIL) is a high-throughput and cost-effective patterning technique for complex nanoscale features and is considered a candidate for CMOS manufacturing at the 22nm node and beyond. To achieve this target a complete template fabrication infrastructure including inspection and repair is needed. Due to the 1X magnification factor of imprint lithography the requirements for these steps are more challenging compared to those for 4X photomasks. E-beam repair is a very promising repair technology for high-resolution imprint templates. It combines the advantages of precise beam placement using fine resolution images and damage free repair by electron beam induced chemical reactions. In this work we performed template repair using a new test stand with improved beam and stage stability. Repeatability of 3D pattern reconstruction with main focus on shrunk lateral repair dimensions and height control was investigated. The evaluation was done on various features in a 40nm half pitch design. Additionally, the resolution capability of the new hardware was examined on selected programmed defects in a 32nm half pitch design. A first qualitative examination of the repaired template was done using top-view SEM images taken from the test stand before and after repair. The repaired template was then imprinted on 300mm silicon wafers, and the imprinted repaired defects were analyzed using a SEM Zeiss Ultra 60.