Integrative molecular analysis of metastatic hepatocellular carcinoma

[1]  Joshua F. McMichael,et al.  Integrative omics analyses broaden treatment targets in human cancer , 2018, Genome Medicine.

[2]  Peter W. Laird,et al.  Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer , 2018, Cell.

[3]  Konrad J. Karczewski,et al.  Integrative omics for health and disease , 2018, Nature Reviews Genetics.

[4]  M. Hao,et al.  H3B-6527 Is a Potent and Selective Inhibitor of FGFR4 in FGF19-Driven Hepatocellular Carcinoma. , 2017, Cancer research.

[5]  Y. Pomyen,et al.  Common Molecular Subtypes Among Asian Hepatocellular Carcinoma and Cholangiocarcinoma. , 2017, Cancer cell.

[6]  Steven J. M. Jones,et al.  Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma , 2017, Cell.

[7]  Michael Q. Zhang,et al.  Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification , 2015, BMC Genomics.

[8]  Yun Liu,et al.  Comparative transcriptome analysis reveals that the extracellular matrix receptor interaction contributes to the venous metastases of hepatocellular carcinoma. , 2015, Cancer genetics.

[9]  Sandrine Imbeaud,et al.  DNA methylation‐based prognosis and epidrivers in hepatocellular carcinoma , 2015, Hepatology.

[10]  G. Xiong,et al.  Chaperone Hsp47 Drives Malignant Growth and Invasion by Modulating an ECM Gene Network. , 2015, Cancer research.

[11]  Nicolas Stransky,et al.  First Selective Small Molecule Inhibitor of FGFR4 for the Treatment of Hepatocellular Carcinomas with an Activated FGFR4 Signaling Pathway. , 2015, Cancer discovery.

[12]  Hong-Yang Wang,et al.  CYP3A5 Functions as a Tumor Suppressor in Hepatocellular Carcinoma by Regulating mTORC2/Akt Signaling. , 2015, Cancer research.

[13]  Hong Tang,et al.  Tenascin-C expression is associated with poor prognosis in hepatocellular carcinoma (HCC) patients and the inflammatory cytokine TNF-α-induced TNC expression promotes migration in HCC cells. , 2015, American journal of cancer research.

[14]  W. Sung,et al.  Genomic portrait of resectable hepatocellular carcinomas: Implications of RB1 and FGF19 aberrations for patient stratification , 2014, Hepatology.

[15]  Haitao Luo,et al.  Identification of prognostic biomarkers in hepatitis B virus-related hepatocellular carcinoma and stratification by integrative multi-omics analysis. , 2014, Journal of hepatology.

[16]  Thomas D. Wu,et al.  Diverse modes of genomic alteration in hepatocellular carcinoma , 2014, Genome Biology.

[17]  H. Aburatani,et al.  Exploration of liver cancer genomes , 2014, Nature Reviews Gastroenterology &Hepatology.

[18]  G. Gores,et al.  Hepatocellular carcinoma: clinical frontiers and perspectives , 2014, Gut.

[19]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[20]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[21]  Michael Q. Zhang,et al.  FastDMA: An Infinium HumanMethylation450 Beadchip Analyzer , 2013, PloS one.

[22]  Zhou Zhu,et al.  Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma , 2013, Hepatology.

[23]  Suk Woo Nam,et al.  Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR‐125a‐5p and MiR‐125b , 2013, Hepatology.

[24]  F. Jasmine,et al.  Exploring genome-wide DNA methylation profiles altered in hepatocellular carcinoma using Infinium HumanMethylation 450 BeadChips , 2013, Epigenetics.

[25]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[26]  Boping Zhou,et al.  Exome sequencing of hepatitis B virus–associated hepatocellular carcinoma , 2012, Nature Genetics.

[27]  Jing Shen,et al.  Genome‐wide DNA methylation profiles in hepatocellular carcinoma , 2012, Hepatology.

[28]  I. Ng,et al.  Sequential alterations of microrna expression in hepatocellular carcinoma development and venous metastasis , 2012, Hepatology.

[29]  Sebastian D. Mackowiak,et al.  miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades , 2011, Nucleic acids research.

[30]  B. H. Haug,et al.  Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma , 2011, British Journal of Cancer.

[31]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[32]  Lincoln D. Stein,et al.  Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. , 2011, Cancer cell.

[33]  Ankit Malhotra,et al.  miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. , 2011, Cancer research.

[34]  H. El‐Serag,et al.  Hepatocellular carcinoma. , 2011, The New England journal of medicine.

[35]  D. Pe’er,et al.  An Integrated Approach to Uncover Drivers of Cancer , 2010, Cell.

[36]  D. Xie,et al.  Down‐regulation of tyrosine aminotransferase at a frequently deleted region 16q22 contributes to the pathogenesis of hepatocellular carcinoma , 2010, Hepatology.

[37]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[38]  Shufeng Zhou Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. , 2008, Current drug metabolism.

[39]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[40]  Hidetoshi Shimodaira,et al.  Pvclust: an R package for assessing the uncertainty in hierarchical clustering , 2006, Bioinform..

[41]  X. Wang,et al.  Predicting hepatitis B virus–positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning , 2003, Nature Medicine.

[42]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[43]  J A McKay,et al.  Tumor-specific expression of cytochrome P450 CYP1B1. , 1997, Cancer research.

[44]  C. J. Chen,et al.  Cytochrome P450 2E1 and glutathione S-transferase M1 polymorphisms and susceptibility to hepatocellular carcinoma. , 1995, Gastroenterology.

[45]  D. Woodfield Hepatocellular carcinoma. , 1986, The New Zealand medical journal.