Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators

[1]  J. S. Aitchison,et al.  The nonlinear optical properties of AlGaAs at the half band gap , 1997 .

[2]  Scott A. Diddams,et al.  The evolving optical frequency comb [Invited] , 2010 .

[3]  T. C. Briles,et al.  Kerr Solitons with Tantala Ring Resonators , 2019, Nonlinear Optics (NLO).

[4]  K. Vahala,et al.  Modal coupling in traveling-wave resonators. , 2002, Optics letters.

[5]  A. Boes,et al.  Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators , 2020 .

[6]  I Favero,et al.  Second-harmonic generation in AlGaAs microdisks in the telecom range. , 2014, Optics letters.

[7]  Polarization Control in Graphene‐Based Polymer Waveguide Polarizer , 2018, Laser & Photonics Reviews.

[8]  Michal Lipson,et al.  Photonic-chip-based frequency combs , 2019, Nature Photonics.

[9]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[10]  Ultralow-power chip-based soliton microcombs for photonic integration , 2018, Optica.

[11]  Hansuek Lee,et al.  Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. , 2012, Physical review letters.

[12]  J. Bowers,et al.  Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. , 2017, Optics letters.

[13]  Roberto Morandotti,et al.  CMOS-compatible integrated optical hyper-parametric oscillator , 2010 .

[14]  M. Gearing,et al.  Correction: Corrigendum: Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s disease model , 2014, Nature Communications.

[15]  Jonathan M. Silver,et al.  Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser , 2018, Optica.

[16]  Michal Lipson,et al.  Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold , 2017 .

[17]  Heming Wang,et al.  Bridging ultrahigh-Q devices and photonic circuits , 2017, Nature Photonics.

[18]  J. Bowers,et al.  Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics , 2018, Applied Sciences.

[19]  M. Lipson,et al.  Battery-operated integrated frequency comb generator , 2018, Nature.

[20]  Lai Wang,et al.  Integrated continuous-wave aluminum nitride Raman laser , 2017 .

[21]  E. Semenova,et al.  AlGaAs-On-Insulator Nonlinear Photonics , 2015, 1509.03620.

[22]  Arnan Mitchell,et al.  Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits , 2018 .

[23]  M. Gorodetsky,et al.  Electrically pumped photonic integrated soliton microcomb , 2018, Nature Communications.

[24]  Michal Lipson,et al.  Silicon-chip mid-infrared frequency comb generation , 2014, Nature Communications.

[25]  Bruno Gérard,et al.  Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 10 6 , 2017 .

[26]  John E. Bowers,et al.  Photonic Integrated Circuits Using Heterogeneous Integration on Silicon , 2018, Proceedings of the IEEE.

[27]  John E. Bowers,et al.  Strong frequency conversion in heterogeneously integrated GaAs resonators , 2019, APL Photonics.

[28]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[29]  Kerry J. Vahala,et al.  Gigahertz-repetition-rate soliton microcombs , 2018 .

[30]  T. C. Briles,et al.  Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics , 2019, Nature Photonics.

[31]  T. Kippenberg,et al.  Probing the loss origins of ultra-smooth $\mathrm{Si_3N_4}$ integrated photonic waveguides , 2018, 1802.08315.

[32]  Shanhui Fan,et al.  Enhanced second-harmonic generation in AlGaAs/AlxOy tightly confining waveguides and resonant cavities. , 2006, Optics letters.

[33]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[34]  John E. Bowers,et al.  Thin film wavelength converters for photonic integrated circuits , 2016 .

[35]  Katharina Schneider,et al.  Gallium Phosphide-on-Silicon Dioxide Photonic Devices , 2018, Journal of Lightwave Technology.

[36]  Jian Wang,et al.  Mode-locked dark pulse Kerr combs in normal-dispersion microresonators , 2015, Nature Photonics.

[37]  Tohru Mogami,et al.  Low-loss silicon wire waveguides for optical integrated circuits , 2016 .

[38]  Kerry J. Vahala,et al.  Soliton frequency comb at microwave rates in a high-Q silica microresonator , 2015 .

[39]  Xiang Guo,et al.  Parametric down-conversion photon-pair source on a nanophotonic chip , 2016, Light: Science & Applications.

[40]  M. Qi,et al.  Mode interaction aided excitation of dark solitons in microresonators constructed of normal dispersion waveguides , 2014, 1404.2865.

[41]  Scott A. Diddams,et al.  The evolving optical frequency comb , 2010 .

[42]  Michal Lipson,et al.  Breaking the Loss Limitation of On-chip High-confinement Resonators , 2016, 1609.08699.

[43]  A. Boes,et al.  Low loss (Al)GaAs on an insulator waveguide platform. , 2019, Optics letters.

[44]  H. Tang,et al.  High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. , 2018, Optics letters.

[45]  John E. Bowers,et al.  Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics , 2018, Applied Sciences.

[46]  K. Srinivasan,et al.  Kerr Microresonator Soliton Frequency Combs at Cryogenic Temperatures. , 2019, Physical review applied.

[47]  Marko Loncar,et al.  Monolithic ultra-high-Q lithium niobate microring resonator , 2017, 1712.04479.

[48]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[49]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[50]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2017, Nature.

[51]  Ofer Levi,et al.  Improved dispersion relations for GaAs and applications to nonlinear optics , 2003 .

[52]  Kerry J. Vahala,et al.  Chemically etched ultrahigh-Q wedge-resonator on a silicon chip , 2012, Nature Photonics.

[53]  Kartik Srinivasan,et al.  Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits , 2015, Nature Photonics.

[54]  Paulina S. Kuo,et al.  Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity , 2014, Nature Communications.

[55]  A. Leinse,et al.  Ultra-low-loss high-aspect-ratio Si3N4 waveguides. , 2011, Optics express.

[56]  Qiang Lin,et al.  A self-starting bi-chromatic LiNbO3 soliton microcomb , 2018, 1812.09610.

[57]  T. Kippenberg,et al.  Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins , 2018, Optica.

[58]  Miles H. Anderson,et al.  Gallium Phosphide Microresonator Frequency Combs , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[59]  G. Schröder-Turk,et al.  Bragg-mirror-like circular dichroism in bio-inspired quadruple-gyroid 4srs nanostructures , 2016, Light: Science & Applications.

[60]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[61]  K. Vahala Optical microcavities , 2003, Nature.

[62]  Erwan Lucas,et al.  Photonic microwave generation in the X- and K-band using integrated soliton microcombs , 2020, Nature Photonics.

[63]  John E. Bowers,et al.  Heterogeneously Integrated GaAs Waveguides on Insulator for Efficient Frequency Conversion , 2018, Laser & Photonics Reviews.