Algebraic Polymodal Logic: A Survey

This is a review of those aspects of the theory of varieties of Boolean algebras with operators (BAO’s) that emphasise connections with modal logic and structural properties that are related to natural properties of logical systems. It begins with a survey of the duality that exists between BAO’s and relational structures, focusing on the notions of bounded morphisms, inner substructures, disjoint and bounded unions, and canonical extensions of structures that originate in the study of validity-preserving operations on Kripke frames. This duality is then applied to polymodal propositional logics having finitary intensional connectives that generalise the Box and Diamond connectives of unary modal logic. Issues discussed include validity in canonical structures, completeness and incompleteness under the relational semantics, and characterisations of logics by elementary classes of structures and by finite structures. It turns out that a logic is strongly complete for the relational semantics iff the variety of algebras it defines is complex , which means that every algebra in the variety is embeddable into a full powerset algebra that is also in the variety. A hitherto unpublished formulation and proof of this is given (Theorem 5.6.1) that applies to quasi-varieties. This is followed by an algebraic demonstration that the temporal logic of Dedekind complete linear orderings defines a complex variety, adapting Gabbay’s model-theoretic proof that this logic is strongly complete.

[1]  E. J. Lemmon,et al.  Algebraic semantics for modal logics II , 1966, Journal of Symbolic Logic.

[2]  Robert Goldblatt,et al.  Quasi-Modal Equivalence of Canonical Structures , 2001, Journal of Symbolic Logic.

[3]  George Boolos,et al.  An incomplete system of modal logic , 1985, J. Philos. Log..

[4]  Steven K. Thomason,et al.  Semantic analysis of tense logics , 1972, Journal of Symbolic Logic.

[5]  R. A. Bull That All Normal Extensions of S4.3 Have the Finite Model Property , 1966 .

[6]  R. Goldblatt Logics of Time and Computation , 1987 .

[7]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[8]  S. K. Thomason,et al.  AXIOMATIC CLASSES IN PROPOSITIONAL MODAL LOGIC , 1975 .

[9]  Natasha Alechina,et al.  Correspondence and Completeness for Generalized Quantifiers , 1995, Log. J. IGPL.

[10]  J.F.A.K. van Benthem,et al.  Modal Correspondence Theory , 1977 .

[11]  A. Tarski,et al.  A Formalization Of Set Theory Without Variables , 1987 .

[12]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[13]  D. Gabbay,et al.  Handbook of Philosophical Logic, Volume II. Extensions of Classical Logic , 1986 .

[14]  J. Davenport Editor , 1960 .

[15]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[16]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[17]  Robert Goldblatt,et al.  Varieties of Complex Algebras , 1989, Ann. Pure Appl. Log..

[18]  Willem J. Blok,et al.  The lattice of modal logics: an algebraic investigation , 1980, Journal of Symbolic Logic.

[19]  Cecylia . Rauszer,et al.  Algebraic methods in logic and in computer science , 1993 .

[20]  R. Goldblatt Elementary generation and canonicity for varieties of Boolean algebras with operators , 1995 .

[21]  Krister Segerberg,et al.  An essay in classical modal logic , 1971 .

[22]  A. Tarski,et al.  On Closed Elements in Closure Algebras , 1946 .

[23]  Bjarni Jónsson,et al.  On the canonicity of Sahlqvist identities , 1994, Stud Logica.

[24]  Paul R. Halmos,et al.  Algebraic logic, I. Monadic boolean algebras , 1956 .

[25]  Edward L. Keenan,et al.  The Intensional Logic , 1985 .

[26]  B. Jónsson Varieties of relation algebras , 1982 .

[27]  Steven K. Thomason Categories of Frames for Modal Logic , 1975, J. Symb. Log..

[28]  A. Tarski,et al.  Cylindric Set Algebras , 1981 .

[29]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[30]  A. Tarski,et al.  The Algebra of Topology , 1944 .

[31]  Dov M. Gabbay,et al.  Investigations in modal and tense logics with applications to problems in philosophy and linguistics , 1976 .

[32]  Alasdair Urquhart,et al.  Decidability and the finite model property , 1981, J. Philos. Log..

[33]  Alfred Tarski,et al.  Some theorems about the sentential calculi of Lewis and Heyting , 1948, The Journal of Symbolic Logic.

[34]  George Edward Hughes,et al.  Every world can see a reflexive world , 1990, Stud Logica.

[35]  Ildikó Sain,et al.  Beth's and Craig's properties via epimorphisms and amalgamation in algebraic logic , 1988, Algebraic Logic and Universal Algebra in Computer Science.

[36]  R. Goldblatt Mathematics of modality , 1993 .

[37]  Johan van Benthem,et al.  Back and Forth Between Modal Logic and Classical Logic , 1995, Log. J. IGPL.

[38]  Kit Fine,et al.  An incomplete logic containing S4 , 1974 .

[39]  K. Segerberg A completeness theorem in the modal logic of programs , 1982 .

[40]  M. de Rijke,et al.  Sahlqvist's theorem for boolean algebras with operators with an application to cylindric algebras , 1995, Stud Logica.

[41]  R. A. Bull An Algebraic Study of Tense Logics with Linear Time , 1968, J. Symb. Log..

[42]  K. Fine Some Connections Between Elementary and Modal Logic , 1975 .

[43]  J. Monk,et al.  Unprovability of Consistency , 1976 .

[44]  maarten marx Algebraic Relativization and Arrow Logic , 1995 .

[45]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[46]  J. C. C. McKinsey,et al.  A Solution of the Decision Problem for the Lewis systems S2 and S4, with an Application to Topology , 1941, J. Symb. Log..

[47]  Frank Wolter,et al.  Properties of Tense Logics , 1996, Math. Log. Q..

[48]  Robert Goldblatt The McKinsey Axiom Is Not Canonical , 1991, J. Symb. Log..

[49]  S. K. Thomason,et al.  An incompleteness theorem in modal logic , 1974 .

[50]  David Makinson,et al.  A normal modal calculus between T and S4 without the finite model property , 1969, Journal of Symbolic Logic.

[51]  István Németi,et al.  On cylindric algebraic model theory , 1990, Algebraic Logic and Universal Algebra in Computer Science.

[52]  Yde Venema,et al.  Many-dimensional Modal Logic , 1991 .

[53]  E. J. Lemmon,et al.  Algebraic semantics for modal logics I , 1966, Journal of Symbolic Logic (JSL).

[54]  Algebraic logic , 1985, Problem books in mathematics.

[55]  Robert Goldblatt,et al.  Reflections on a Proof of Elementarity , 1999 .