Entropy Decay for Davies Semigroups of a One Dimensional Quantum Lattice

Given a finite-range, translation-invariant commuting system Hamiltonians on a spin chain, we show that the Davies semigroup describing the reduced dynamics resulting from the joint Hamiltonian evolution of a spin chain weakly coupled to a large heat bath thermalizes rapidly at any temperature. More precisely, we prove that the relative entropy between any evolved state and the equilibrium Gibbs state contracts exponentially fast with an exponent that scales logarithmically with the length of the chain. Our theorem extends a seminal result of Holley and Stroock [40] to the quantum setting, up to a logarithmic overhead, as well as provides an exponential improvement over the non-closure of the gap proved by Brandao and Kastoryano [43]. This has wide-ranging applications to the study of many-body in and out-of-equilibrium quantum systems. Our proof relies upon a recently derived strong decay of correlations for Gibbs states of one dimensional, translation-invariant local Hamiltonians, and tools from the theory of operator spaces. ivan.bardet@inria.fr angela.capel@uni-tuebingen.de lgao20@central.uh.edu anglucia@ucm.es dperezga@ucm.es cambyse.rouze@tum.de 1 ar X iv :2 11 2. 00 60 1v 1 [ qu an tph ] 1 D ec 2 02 1

[1]  Seth Lloyd,et al.  The Quantum Wasserstein Distance of Order 1 , 2020, IEEE Transactions on Information Theory.

[2]  Anna Maria Paganoni,et al.  Entropy inequalities for unbounded spin systems , 2002 .

[3]  G. Pisier Non-commutative vector valued Lp-spaces and completely p-summing maps , 1993, math/9306206.

[4]  Ivan Bardet,et al.  Estimating the decoherence time using non-commutative Functional Inequalities , 2017, 1710.01039.

[5]  Anurag Anshu,et al.  A simple proof of the detectability lemma and spectral gap amplification , 2016, 1602.01210.

[6]  Marius Junge,et al.  Geometric Approach Towards Complete Logarithmic Sobolev Inequalities , 2021, 2102.04434.

[7]  Quasi-factorization and Multiplicative Comparison of Subalgebra-Relative Entropy , 2019, 1912.00983.

[8]  K. Temme,et al.  Quantum logarithmic Sobolev inequalities and rapid mixing , 2012, 1207.3261.

[9]  David Perez-Garcia,et al.  Stability of Local Quantum Dissipative Systems , 2013, 1303.4744.

[10]  M. Fannes,et al.  On thermalization in Kitaev's 2D model , 2008, 0810.4584.

[11]  Michal Horodecki,et al.  On Thermal Stability of Topological Qubit in Kitaev's 4D Model , 2008, Open Syst. Inf. Dyn..

[12]  Giacomo De Palma,et al.  Quantum concentration inequalities , 2021 .

[13]  Angelo Lucia,et al.  Rapid Thermalization of Spin Chain Commuting Hamiltonians. , 2021, Physical review letters.

[14]  N. Datta,et al.  Concentration of quantum states from quantum functional and transportation cost inequalities , 2017, Journal of Mathematical Physics.

[15]  S. Popa,et al.  Entropy and index for subfactors , 1986 .

[17]  M. Junge,et al.  Mixed-norm Inequalities and Operator Space Lp Embedding Theory , 2010 .

[18]  Daniel Stilck França,et al.  Relative Entropy Convergence for Depolarizing Channels , 2015, 1508.07021.

[19]  H. Araki Gibbs states of a one dimensional quantum lattice , 1969 .

[20]  Cambyse Rouz'e,et al.  Complete Entropic Inequalities for Quantum Markov Chains , 2021, Archive for Rational Mechanics and Analysis.

[21]  E. Davies Generators of dynamical semigroups , 1979 .

[22]  David Pérez-García,et al.  Quantum conditional relative entropy and quasi-factorization of the relative entropy , 2018, Journal of Physics A: Mathematical and Theoretical.

[23]  Ivan Bardet,et al.  Hypercontractivity and Logarithmic Sobolev Inequality for Non-primitive Quantum Markov Semigroups and Estimation of Decoherence Rates , 2018, Annales Henri Poincaré.

[24]  Angelo Lucia,et al.  Thermalization in Kitaev's quantum double models via Tensor Network techniques , 2021, 2107.01628.

[25]  Nicholas LaRacuente,et al.  Stability of logarithmic Sobolev inequalities under a noncommutative change of measure , 2019, ArXiv.

[26]  Raffaella Carbone,et al.  Logarithmic Sobolev inequalities in non-commutative algebras , 2015 .

[27]  S. erban Nacu Glauber Dynamics on the Cycle Is Monotone , 2008 .

[28]  Gilles Pisier,et al.  Introduction to Operator Space Theory , 2003 .

[29]  A. Lucia,et al.  On the modified logarithmic Sobolev inequality for the heat-bath dynamics for 1D systems , 2019, Journal of Mathematical Physics.

[30]  Li Gao,et al.  Fisher Information and Logarithmic Sobolev Inequality for Matrix-Valued Functions , 2018, Annales Henri Poincaré.

[31]  B. Zegarliński,et al.  Log-Sobolev inequalities for infinite one dimensional lattice systems , 1990 .

[32]  Andreas Bluhm,et al.  Exponential decay of mutual information for Gibbs states of local Hamiltonians , 2021 .

[33]  N. Cooper,et al.  Interacting symmetry-protected topological phases out of equilibrium , 2019, Physical Review Research.

[34]  M. Sentís Quantum theory of open systems , 2002 .

[35]  E. Davies,et al.  One-parameter semigroups , 1980 .

[36]  Z. Ruan,et al.  Subspaces of C*-algebras , 1988 .

[37]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[38]  F. Cesi Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields , 2001 .

[39]  Vlatko Vedral,et al.  Quantum phase transition between cluster and antiferromagnetic states , 2011, 1103.0251.

[40]  Complete Logarithmic Sobolev inequality via Ricci curvature bounded below II , 2021, Journal of Topology and Analysis.

[41]  Allan M. Sinclair,et al.  OPERATOR SPACES (London Mathematical Society Monographs: New Series 23) By E DWARD G. E FFROS and Z HONG -J IN R UAN : 363 pp., £60.00 (LMS members' price £42.00), ISBN 0-19-853482-5 (Clarendon Press, Oxford, 2000). , 2001 .

[42]  David Pérez-García,et al.  Superadditivity of Quantum Relative Entropy for General States , 2017, IEEE Transactions on Information Theory.

[43]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[44]  Ivan Bardet,et al.  Approximate Tensorization of the Relative Entropy for Noncommuting Conditional Expectations , 2021, Annales Henri Poincaré.

[45]  Fernando G. S. L. Brandão,et al.  Quantum Gibbs Samplers: The Commuting Case , 2014, Communications in Mathematical Physics.

[46]  D. Pérez-García,et al.  Classification of phases for mixed states via fast dissipative evolution , 2018, Quantum.

[47]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[48]  Daniel Stilck Francca,et al.  The modified logarithmic Sobolev inequality for quantum spin systems: classical and commuting nearest neighbour interactions , 2020, 2009.11817.

[49]  Maurizio Verri,et al.  Long-time asymptotic properties of dynamical semigroups onW*-algebras , 1982 .

[50]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[51]  Á. Cuevas Quantum logarithmic Sobolev inequalities for quantum many-body systems: An approach via quasi-factorization of the relative entropy , 2019 .

[52]  Xiao-Gang Wen,et al.  Classification of gapped symmetric phases in one-dimensional spin systems , 2010, 1008.3745.

[53]  W. L. Paschke Inner Product Modules Over B ∗ -Algebras , 1973 .

[54]  Umesh V. Vazirani,et al.  The detectability lemma and quantum gap amplification , 2008, STOC '09.

[55]  Salman Beigi,et al.  Quantum Reverse Hypercontractivity: Its Tensorization and Application to Strong Converses , 2018, ArXiv.

[56]  Herbert Spohn,et al.  Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs , 2007 .

[57]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[58]  Daniel W. Stroock,et al.  Uniform andL2 convergence in one dimensional stochastic Ising models , 1989 .

[59]  Z. Yin,et al.  Interpolation of quasi noncommutative $L_p$-spaces , 2019, 1905.08491.

[60]  N. Cooper,et al.  Fragility of time-reversal symmetry protected topological phases , 2020 .