Carbon-based nanodevices for sensors, actuators, and electronics

We are pursuing several projects aimed at developing carbon-based nanodevices for sensing, actuation, and nanoelectronics applications. In one project, we are seeking to fabricate and characterize carbon nanotube quantum dots (CNT-QDs) with potential application as future electronic memories with high-performance, bandwidth, and throughput. In a second effort, we have used pulsed laser deposition (PLD) to create thermal bimorph nanoactuators based on multi-wall nano tubes (MWNTs) coated on one side with a thin metal film. Lastly, graphene materials are being studied to investigate its field emission properties for vacuum electronics and to exploit its differential conductivity. These devices have potential in a wide range of applications including sensors, detectors, system-on-a-chip, system-in-a-package, programmable logic controls, energy storage systems and all-electronic systems.

[1]  Donats Erts,et al.  A single electron transistor on an atomic force microscope probe. , 2006, Nano letters.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  J. Harris,et al.  Experimental and Simulated Results of Room Temperature Single Electron Transistor Formed by Atomic Force Microscopy Nano-Oxidation Process , 2000 .

[4]  Yasunobu Nakamura,et al.  100-K Operation of Al-Based Single-Electron Transistors , 1996 .

[5]  Probing spin accumulation in Ni/Au/Ni single-electron transistors with efficient spin injection and detection electrodes. , 2006, Nano letters.

[6]  Jari Penttilä,et al.  Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation , 1999 .

[7]  Lars Samuelson,et al.  Few-Electron Quantum Dots in Nanowires , 2004 .

[8]  Masayuki Nogami,et al.  Room temperature single electron transistor with two-dimensional array of Au–SiO2 core–shell nanoparticles , 2005 .

[9]  Bernd Spangenberg,et al.  77 K single electron transistors fabricated with 0.1 μm technology , 1997 .

[10]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[11]  M. Kastner,et al.  The single electron transistor and artificial atoms , 2000, Annalen der Physik.

[12]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[13]  Yasuo Takahashi,et al.  Size dependence of the characteristics of Si single-electron transistors on SIMOX substrates , 1996 .

[14]  M. Manninen,et al.  Electronic structure of quantum dots , 2002 .

[15]  Local Ar beam irradiation for making tunneling barriers and its application to single electron inverter in multi-wall carbon nanotubes , 2003 .

[16]  T. Kitade,et al.  Room-temperature operation of an exclusive-OR circuit using a highly doped Si single-electron transistor , 2004 .

[17]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[18]  Konstantin K. Likharev,et al.  Single Electronics: A Correlated Transfer of Single Electrons and Cooper Pairs in Systems of Small Tunnel Junctions , 1991 .

[19]  P. Ajayan,et al.  Metal--semiconductor transition in single-walled carbon nanotubes induced by low-energy electron irradiation. , 2005, Nano letters.

[20]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[21]  Yi Cui,et al.  Electrical transport through a single nanoscale semiconductor branch point. , 2005, Nano letters.

[22]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[23]  Kazuhiko Matsumoto,et al.  Room-temperature single-electron memory made by pulse-mode atomic force microscopy nano oxidation process on atomically flat α-alumina substrate , 2000 .

[24]  K. Likharev Nanotechnology: Dragging single electrons , 2001, Nature.

[25]  T. Fukui,et al.  GaAs dot-wire coupled structures grown by selective area metalorganic vapor phase epitaxy and their application to single electron devices , 2001 .

[26]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[27]  M. D. LaHaye,et al.  Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.

[28]  M. Tsai,et al.  Fabrication of a germanium quantum-dot single-electron transistor with large Coulomb-blockade oscillations at room temperature , 2004 .

[29]  Kang L. Wang,et al.  Tunnel diodes fabricated from CdSe nanocrystal monolayers , 1999 .

[30]  Kazumasa Nomoto,et al.  Novel logic device using coupled quantum dots , 1993 .

[31]  Kazuhiko Matsumoto,et al.  Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanooxidation process for the TiOx/Ti system , 1996 .

[32]  T. Hiramoto,et al.  Room-temperature demonstration of low-voltage and tunable static memory based on negative differential conductance in silicon single-electron transistors , 2004 .

[33]  M. Tinkham,et al.  Gate-Voltage Studies of Discrete Electronic States in Aluminum Nanoparticles , 1997 .

[34]  H. Kataura,et al.  Ambipolar single electron transistors using side-contacted single-walled carbon nanotubes , 2006 .

[35]  Silicon single-electron parametron cell for solid-state quantum information processing , 2003 .

[36]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[37]  U. Meirav,et al.  Single-electron phenomena in semiconductors , 1996 .

[38]  Koji Ishibashi,et al.  Exclusive-OR gate using a two-input single-electron transistor in single-wall carbon nanotubes , 2005 .

[39]  Jing Kong,et al.  Electric-field-directed growth of aligned single-walled carbon nanotubes , 2001 .

[40]  Konstantin K. Likharev,et al.  A numerical study of the accuracy of single‐electron current standards , 1996 .

[41]  Single-shot charge qubit read-out using a single electron transistor: back-action and fidelity , 2002 .

[42]  Kazuhiko Matsumoto,et al.  Single-electron charging effects in Nb/Nb oxide-based single-electron transistors at room temperature , 1998 .

[43]  F. Cotton,et al.  Vibrational excitations in single trimetal-molecule transistors. , 2005, Nano letters.

[44]  Zahid A. K. Durrani,et al.  Room temperature nanocrystalline silicon single-electron transistors , 2003 .

[45]  Adrian M. Ionescu,et al.  Hybrid CMOS Single-Electron-Transistor Device And Circuit Design , 2006 .

[46]  Jean-Luc Brédas,et al.  Single-electron transistor of a single organic molecule with access to several redox states , 2003, Nature.

[47]  A Paul Alivisatos,et al.  A single-electron transistor made from a cadmium selenide nanocrystal , 1997, Nature.

[48]  Zhen Yao,et al.  Carbon Nanotube Single‐Electron Transistors at Room Temperature. , 2001 .

[49]  Kang L. Wang,et al.  Fabrication of bismuth nanowires with a silver nanocrystal shadowmask , 2000 .

[50]  G. Barillaro,et al.  Silicon single-electron transistor fabricated by anisotropic etch and oxidation , 2006 .

[51]  S. I. Serdyukova,et al.  Single-electron tunnel junction array: an electrostatic analog of the Josephson transmission line , 1989 .

[53]  Dolan,et al.  Observation of single-electron charging effects in small tunnel junctions. , 1987, Physical review letters.

[54]  Laszlo B. Kish,et al.  Can single electron logic microprocessors work at room temperature , 2004 .

[55]  D. L. Klein,et al.  An approach to electrical studies of single nanocrystals , 1996 .

[56]  E. Yang,et al.  A multi-walled carbon nanotube-aluminum bimorph nanoactuator. , 2009, Nanotechnology.

[57]  A. Dutta,et al.  Single-Electron Tunneling Devices Based on Silicon Quantum Dots Fabricated by Plasma Process , 2000 .

[58]  Pei-Wen Li,et al.  Room-temperature transient carrier transport in germanium single-hole/electron transistors , 2006 .