Accelerating compressed sensing in parallel imaging reconstructions using an efficient circulant preconditioner for cartesian trajectories

Design of a preconditioner for fast and efficient parallel imaging (PI) and compressed sensing (CS) reconstructions for Cartesian trajectories.

[1]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[2]  R. Jia,et al.  Applied and Computational Harmonic Analysis Convergence Analysis of the Bregman Method for the Variational Model of Image Denoising , 2022 .

[3]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[4]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[5]  Stephen P. Boyd,et al.  An Efficient Method for Compressed Sensing , 2007, 2007 IEEE International Conference on Image Processing.

[6]  James Demmel,et al.  Fast $\ell_1$ -SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime , 2012, IEEE Transactions on Medical Imaging.

[7]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[8]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[9]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[10]  Robin M Heidemann,et al.  SMASH, SENSE, PILS, GRAPPA: How to Choose the Optimal Method , 2004, Topics in magnetic resonance imaging : TMRI.

[11]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[12]  Junzhou Huang,et al.  Real Time Dynamic MRI with Dynamic Total Variation , 2014, MICCAI.

[13]  John P Mugler,et al.  Optimized three‐dimensional fast‐spin‐echo MRI , 2014, Journal of magnetic resonance imaging : JMRI.

[14]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[15]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[16]  Ruoyu Li,et al.  Fast Preconditioning for Accelerated Multi-contrast MRI Reconstruction , 2015, MICCAI.

[17]  Jeffrey A. Fessler,et al.  Fast Parallel MR Image Reconstruction via B1-Based, Adaptive Restart, Iterative Soft Thresholding Algorithms (BARISTA) , 2015, IEEE Transactions on Medical Imaging.

[18]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[19]  Li Feng,et al.  Free-Breathing Contrast-Enhanced Multiphase MRI of the Liver Using a Combination of Compressed Sensing, Parallel Imaging, and Golden-Angle Radial Sampling , 2013, Investigative radiology.

[20]  Junzhou Huang,et al.  Efficient Preconditioning in Joint Total Variation Regularized Parallel MRI Reconstruction , 2015, MICCAI.

[21]  R. Plessix,et al.  An MSSS-preconditioned matrix equation approach for the time-harmonic elastic wave equation at multiple frequencies , 2018, Computational Geosciences.

[22]  Jennifer A. Scott,et al.  On Signed Incomplete Cholesky Factorization Preconditioners for Saddle-Point Systems , 2014, SIAM J. Sci. Comput..

[23]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[24]  Angélique Stéphanou,et al.  Towards the Design of a Patient-Specific Virtual Tumour , 2016, Comput. Math. Methods Medicine.

[25]  Bjørn Fredrik Nielsen,et al.  The split Bregman algorithm applied to PDE-constrained optimization problems with total variation regularization , 2016, Comput. Optim. Appl..

[26]  Brendt Wohlberg,et al.  Efficient Minimization Method for a Generalized Total Variation Functional , 2009, IEEE Transactions on Image Processing.

[27]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[28]  Kurt Keutzer,et al.  Practical parallel imaging compressed sensing MRI: Summary of two years of experience in accelerating body MRI of pediatric patients , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[29]  Emmanuel J. Candès,et al.  Signal recovery from random projections , 2005, IS&T/SPIE Electronic Imaging.

[30]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[31]  Dong Liang,et al.  Sparse Parallel MRI Based on Accelerated Operator Splitting Schemes , 2016, Comput. Math. Methods Medicine.

[32]  Jeffrey A. Fessler,et al.  An accelerated iterative reweighted least squares algorithm for compressed sensing MRI , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[33]  Simon Setzer,et al.  Operator Splittings, Bregman Methods and Frame Shrinkage in Image Processing , 2011, International Journal of Computer Vision.

[34]  Nicole Seiberlich,et al.  Parallel MR imaging , 2012, Journal of magnetic resonance imaging : JMRI.

[35]  L. Ying,et al.  Regularized sensitivity encoding (SENSE) reconstruction using bregman iterations , 2009, Magnetic resonance in medicine.

[36]  Mathews Jacob,et al.  Accelerated Dynamic MRI Exploiting Sparsity and Low-Rank Structure: k-t SLR , 2011, IEEE Transactions on Medical Imaging.

[37]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[38]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[39]  Jianlin Xia,et al.  Fast reconstruction for multichannel compressed sensing using a hierarchically semiseparable solver , 2015, Magnetic resonance in medicine.

[40]  L. Ying,et al.  Accelerating SENSE using compressed sensing , 2009, Magnetic resonance in medicine.

[41]  Yu Li,et al.  A software channel compression technique for faster reconstruction with many channels. , 2008, Magnetic resonance imaging.

[42]  Michael Lustig,et al.  Coil compression for accelerated imaging with Cartesian sampling , 2013, Magnetic resonance in medicine.

[43]  Jianwu Li,et al.  Combining SENSE and compressed sensing MRI With a fast iterative contourlet thresholding algorithm , 2015, 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).

[44]  Michael Elad,et al.  ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA , 2014, Magnetic resonance in medicine.

[45]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[46]  K. T. Block,et al.  Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint , 2007, Magnetic resonance in medicine.

[47]  Shiqian Ma,et al.  An efficient algorithm for compressed MR imaging using total variation and wavelets , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[49]  Jeffrey A. Fessler,et al.  Parallel MR Image Reconstruction Using Augmented Lagrangian Methods , 2011, IEEE Transactions on Medical Imaging.

[50]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[51]  Jeffrey A. Fessler,et al.  Augmented Lagrangian with Variable Splitting for Faster Non-Cartesian ${\rm L}_{1}$-SPIRiT MR Image Reconstruction , 2014, IEEE Transactions on Medical Imaging.

[52]  Leon Axel,et al.  Combination of Compressed Sensing and Parallel Imaging for Highly-Accelerated 3 D First-Pass Cardiac Perfusion MRI , 2009 .