Late steps in bacterial translation initiation visualized using time-resolved cryo-EM

[1]  J. Frank,et al.  Identification of ions in experimental electrostatic potential maps , 2018, IUCrJ.

[2]  M. Ehrenberg,et al.  A conformational switch in initiation factor 2 controls the fidelity of translation initiation in bacteria , 2017, Nature Communications.

[3]  Joseph H. Davis,et al.  Addressing preferred specimen orientation in single-particle cryo-EM through tilting , 2017, Nature Methods.

[4]  Joachim Frank,et al.  Time-resolved cryo-electron microscopy: Recent progress. , 2017, Journal of structural biology.

[5]  A. Schedlbauer,et al.  RsgA couples the maturation state of the 30S ribosomal decoding center to activation of its GTPase pocket , 2017, Nucleic acids research.

[6]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[7]  R. MacKinnon,et al.  Structural Titration of Slo2.2, a Na+-Dependent K+ Channel , 2017, Cell.

[8]  C. Gualerzi,et al.  Structure of a 30S pre-initiation complex stalled by GE81112 reveals structural parallels in bacterial and eukaryotic protein synthesis initiation pathways , 2016, Nucleic acids research.

[9]  Joachim Frank,et al.  Key Intermediates in Ribosome Recycling Visualized by Time-Resolved Cryoelectron Microscopy. , 2016, Structure.

[10]  V. Ramakrishnan,et al.  Large-Scale Movements of IF3 and tRNA during Bacterial Translation Initiation , 2016, Cell.

[11]  T. Mielke,et al.  Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association , 2016, Science Advances.

[12]  C. Ling,et al.  Initiation factor 2 stabilizes the ribosome in a semirotated conformation , 2015, Proceedings of the National Academy of Sciences.

[13]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[14]  M. Rodnina,et al.  Directional transition from initiation to elongation in bacterial translation , 2015, Nucleic acids research.

[15]  C. Gualerzi,et al.  Initiation of mRNA translation in bacteria: structural and dynamic aspects , 2015, Cellular and Molecular Life Sciences.

[16]  K. Caban,et al.  The emerging role of rectified thermal fluctuations in initiator aa-tRNA- and start codon selection during translation initiation. , 2015, Biochimie.

[17]  Toh-Ming Lu,et al.  Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. , 2015, Structure.

[18]  R. L. Gonzalez,et al.  Ribosomal initiation complex-driven changes in the stability and dynamics of initiation factor 2 regulate the fidelity of translation initiation. , 2015, Journal of molecular biology.

[19]  Daniel D Macdougall,et al.  Translation initiation factor 3 regulates switching between different modes of ribosomal subunit joining. , 2015, Journal of molecular biology.

[20]  Lori A. Passmore,et al.  Ultrastable gold substrates for electron cryomicroscopy , 2014, Science.

[21]  Daniel N. Wilson Ribosome-targeting antibiotics and mechanisms of bacterial resistance , 2013, Nature Reviews Microbiology.

[22]  R. Henderson,et al.  High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy☆ , 2013, Ultramicroscopy.

[23]  T. Steitz,et al.  Involvement of protein IF2 N domain in ribosomal subunit joining revealed from architecture and function of the full-length initiation factor , 2013, Proceedings of the National Academy of Sciences.

[24]  Ruben L. Gonzalez,et al.  Conformational selection of translation initiation factor 3 signals proper substrate selection , 2013, Nature Structural &Molecular Biology.

[25]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[26]  Pohl Milón,et al.  Kinetic control of translation initiation in bacteria , 2012, Critical reviews in biochemistry and molecular biology.

[27]  M. Valle,et al.  The Cryo-EM Structure of a Complete 30S Translation Initiation Complex from Escherichia coli , 2011, PLoS biology.

[28]  S. Sanyal,et al.  The ribosomal stalk plays a key role in IF2-mediated association of the ribosomal subunits. , 2010, Journal of molecular biology.

[29]  Toh-Ming Lu,et al.  Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. , 2009, Journal of structural biology.

[30]  Colin Echeverría Aitken,et al.  GTP hydrolysis by IF2 guides progression of the ribosome into elongation. , 2009, Molecular cell.

[31]  Bruno P. Klaholz,et al.  Structure of the 30S translation initiation complex , 2008, Nature.

[32]  M. Rodnina,et al.  Kinetic checkpoint at a late step in translation initiation. , 2008, Molecular cell.

[33]  Leonardo G. Trabuco,et al.  Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. , 2008, Structure.

[34]  C. Gualerzi,et al.  A quantitative kinetic scheme for 70 S translation initiation complex formation. , 2007, Journal of molecular biology.

[35]  C. Gualerzi,et al.  The translational fidelity function of IF3 during transition from the 30 S initiation complex to the 70 S initiation complex. , 2007, Journal of molecular biology.

[36]  C. Gualerzi,et al.  The real-time path of translation factor IF3 onto and off the ribosome. , 2007, Molecular cell.

[37]  M. Ehrenberg,et al.  How initiation factors maximize the accuracy of tRNA selection in initiation of bacterial protein synthesis. , 2006, Molecular cell.

[38]  Måns Ehrenberg,et al.  How initiation factors tune the rate of initiation of protein synthesis in bacteria , 2006, The EMBO journal.

[39]  C. Gualerzi,et al.  Conformational transition of initiation factor 2 from the GTP- to GDP-bound state visualized on the ribosome , 2005, Nature Structural &Molecular Biology.

[40]  Joachim Frank,et al.  The Cryo-EM Structure of a Translation Initiation Complex from Escherichia coli , 2005, Cell.

[41]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[42]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[43]  M. Ehrenberg,et al.  The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis , 2003, The EMBO journal.

[44]  C. Gualerzi,et al.  Mapping the fMet‐tRNAfMet binding site of initiation factor IF2 , 2000, The EMBO journal.

[45]  M. Rodnina,et al.  Late events of translation initiation in bacteria: a kinetic analysis , 2000, The EMBO journal.

[46]  S. Sprang,et al.  Structural and biochemical characterization of the GTPgammaS-, GDP.Pi-, and GDP-bound forms of a GTPase-deficient Gly42 --> Val mutant of Gialpha1. , 1997, Biochemistry.

[47]  C. Gualerzi,et al.  Late events in translation initiation. Adjustment of fMet-tRNA in the ribosomal P-site. , 1996, Journal of molecular biology.

[48]  Joachim Frank,et al.  Time-Resolved Cryo-electron Microscopy Using a Microfluidic Chip. , 2018, Methods in molecular biology.

[49]  Margaret M. Elvekrog,et al.  A highly purified, fluorescently labeled in vitro translation system for single-molecule studies of protein synthesis. , 2010, Methods in enzymology.