Implementation of Real Time Control Algorithm for Gait Assistive Exoskeleton Devices for Stroke Survivors

Controlling human gait by wearable assistive devices is a dynamic and time critical activity and thus requires a dedicated real time control environment. The paper discusses an implementation strategy for real time control algorithm for GaExoD prototype. Control approach follows gait trajectory using feedback sensors and actuators for movement control. NI Lab VIEW, Robotics, FPGA and RT module were used and prove beneficial in shorter development time. Position control errors were estimated for standing and sitting functions provided which is significantly lower for sitting function.

[1]  Lihua Huang,et al.  On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX) , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[2]  Adam Zoss,et al.  On the Biomimetic Design of the Berkeley Lower Extremity Exoskeleton (BLEEX) , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[3]  Neelesh Kumar,et al.  Exoskeleton Device for Rehabilitation of Stroke Patients Using SEMG during Isometric Contraction , 2011 .

[4]  A. Hickey,et al.  Stroke rehabilitation: recent advances and future therapies. , 2013, QJM : monthly journal of the Association of Physicians.

[5]  S. K. Banala,et al.  Novel Gait Adaptation and Neuromotor Training Results Using an Active Leg Exoskeleton , 2010, IEEE/ASME Transactions on Mechatronics.