Crowd modeling and simulation technologies

As a collective and highly dynamic social group, the human crowd is a fascinating phenomenon that has been frequently studied by experts from various areas. Recently, computer-based modeling and simulation technologies have emerged to support investigation of the dynamics of crowds, such as a crowd's behaviors under normal and emergent situations. This article assesses the major existing technologies for crowd modeling and simulation. We first propose a two-dimensional categorization mechanism to classify existing work depending on the size of crowds and the time-scale of the crowd phenomena of interest. Four evaluation criteria have also been introduced to evaluate existing crowd simulation systems from the point of view of both a modeler and an end-user. We have discussed some influential existing work in crowd modeling and simulation regarding their major features, performance as well as the technologies used in this work. We have also discussed some open problems in the area. This article will provide the researchers with useful information and insights on the state of the art of the technologies in crowd modeling and simulation as well as future research directions.

[1]  Daniel Thalmann,et al.  Crowds of Moving Objects: Navigation Planning and Simulation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[2]  M. Hogg,et al.  Rediscovering the social group: A self-categorization theory. , 1989 .

[3]  Michael Batty,et al.  The discrete dynamics of small-scale spatial events: agent-based models of mobility in carnivals and street parades , 2003, Int. J. Geogr. Inf. Sci..

[4]  Glenn Reinman,et al.  SteerBench: a benchmark suite for evaluating steering behaviors , 2009, Comput. Animat. Virtual Worlds.

[5]  A. Mawson Understanding Mass Panic and Other Collective Responses to Threat and Disaster , 2005, Psychiatry.

[6]  Dani Lischinski,et al.  Crowds by Example , 2007, Comput. Graph. Forum.

[7]  Edwin R. Galea A General Approach to Validating Evacuation Models with an Application to EXODUS , 1998 .

[8]  D. Hantula Sources of Power: How People Make Decisions , 2001 .

[9]  Norman I. Badler,et al.  Modeling Crowd and Trained Leader Behavior during Building Evacuation , 2006, IEEE Computer Graphics and Applications.

[10]  Wentong Cai,et al.  Agent‐based human behavior modeling for crowd simulation , 2008, Comput. Animat. Virtual Worlds.

[11]  Natalie Fridman,et al.  Modeling pedestrian crowd behavior based on a cognitive model of social comparison theory , 2010, Comput. Math. Organ. Theory.

[12]  K. Scherer,et al.  Handbook of affective sciences. , 2003 .

[13]  Franziska Klügl-Frohnmeyer,et al.  Large-Scale Agent-Based Pedestrian Simulation , 2007, MATES.

[14]  G SilvermanBarry,et al.  Human behavior models for agents in simulators and games , 2006 .

[15]  Laurent Salzarulo,et al.  A Continuous Opinion Dynamics Model Based on the Principle of Meta-Contrast , 2006, J. Artif. Soc. Soc. Simul..

[16]  Adrian Kuhn Collective Behavior , 2007 .

[17]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[18]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2007, Graph. Model..

[19]  Suiping Zhou,et al.  Snap: A time critical decision‐making framework for MOUT simulations , 2008, Comput. Animat. Virtual Worlds.

[20]  Kevin O'Brien,et al.  Human Behavior Models for Agents in Simulators and Games: Part I: Enabling Science with PMFserv , 2006, Presence: Teleoperators & Virtual Environments.

[21]  N. Badler,et al.  Crowd simulation incorporating agent psychological models, roles and communication , 2005 .

[22]  Norman I. Badler,et al.  Virtual Crowds: Methods, Simulation, and Control , 2008, Virtual Crowds: Methods, Simulation, and Control.

[23]  Daniel Thalmann,et al.  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cav.147 , 2022 .

[24]  Mikel D. Petty,et al.  Developing a Crowd Federate for Military Simulation , 2004 .

[25]  Michael Batty,et al.  Agent-based pedestrian modelling , 2003 .

[26]  L. Festinger A Theory of Social Comparison Processes , 1954 .

[27]  J. Yen,et al.  Extending Recognition-Primed Decision Model For Human-Agent Collaboration , 2005 .

[28]  Natalie Fridman,et al.  Towards a Cognitive Model of Crowd Behavior Based on Social Comparison Theory , 2007, AAAI.

[29]  Franziska Klügl-Frohnmeyer,et al.  A validation methodology for agent-based simulations , 2008, SAC.

[30]  Adrien Treuille,et al.  Continuum crowds , 2006, SIGGRAPH 2006.

[31]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[32]  Yu-Chun Wang,et al.  Survey of pedestrian movement and development of a crowd dynamics model , 2008 .

[33]  Andrew Ortony,et al.  The Cognitive Structure of Emotions , 1988 .

[34]  Soraia Raupp Musse,et al.  Simulating virtual crowds in emergency situations , 2005, VRST '05.

[35]  Michel Bierlaire,et al.  Discrete Choice Models for Pedestrian Walking Behavior , 2006 .

[36]  Kincho H. Law,et al.  A Multi-Agent Based Simulation Framework for the Study of Human and Social Behavior in Egress Analysis , 2005 .

[37]  Charles M. Macal,et al.  Tutorial on agent-based modelling and simulation , 2005, Proceedings of the Winter Simulation Conference, 2005..

[38]  Demetri Terzopoulos,et al.  Artificial fishes: physics, locomotion, perception, behavior , 1994, SIGGRAPH.

[39]  Charles M. Macal,et al.  Tutorial on agent-based modeling and simulation , 2005 .

[40]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[41]  Daniel Thalmann,et al.  Crowd patches: populating large-scale virtual environments for real-time applications , 2009, I3D '09.

[42]  John Yen,et al.  Extending the recognition-primed decision model to support human-agent collaboration , 2005, AAMAS '05.

[43]  Demetri Terzopoulos,et al.  Environmental Modeling for Autonomous Virtual Pedestrians , 2005 .

[44]  John H. Miller,et al.  Complex adaptive systems - an introduction to computational models of social life , 2009, Princeton studies in complexity.

[45]  Norman I. Badler,et al.  Controlling individual agents in high-density crowd simulation , 2007, SCA '07.

[46]  Mikel D. Petty,et al.  Crowd Federate Architecture and API Design , 2004 .

[47]  Stefania Bandini,et al.  SITUATED CELLULAR AGENTS APPROACH TO CROWD MODELING AND SIMULATION , 2007, Cybern. Syst..

[48]  John Funge,et al.  Cognitive modeling: knowledge, reasoning and planning for intelligent characters , 1999, SIGGRAPH.

[49]  Rina Dechter,et al.  Generalized best-first search strategies and the optimality of A* , 1985, JACM.

[50]  Gnana Bharathy,et al.  Human Behavior Models for Agents in Simulators and Games: Part II: Gamebot Engineering with PMFserv , 2006, Presence: Teleoperators & Virtual Environments.

[51]  Michael Gleicher,et al.  Scalable behaviors for crowd simulation , 2004, Comput. Graph. Forum.

[52]  Talib S. Hussain,et al.  Interoperable human behavior models for simulations , 2006 .

[53]  Barbara Yersin,et al.  Steering a Virtual Crowd Based on a Semantically Augmented Navigation Graph , 2005 .

[54]  Guillaume Deffuant,et al.  How can extremism prevail? A study based on the relative agreement interaction model , 2002, J. Artif. Soc. Soc. Simul..

[55]  A. Seyfried,et al.  The fundamental diagram of pedestrian movement revisited , 2005, physics/0506170.

[56]  Daniel Thalmann,et al.  Crowd simulation for interactive virtual environments and VRtraining systems , 2001 .

[57]  David R. Maines,et al.  Rediscovering the Social Group: A Self-Categorization Theory.John C. Turner , Michael A. Hogg , Penelope J. Oakes , Stephen D. Reicher , Margaret S. Wetherell , 1989 .

[58]  Hubert Klüpfel,et al.  The Simulation of Crowds at Very Large Events , 2007 .

[59]  John H. Miller,et al.  Complex Adaptive Systems: An Introduction to Computational Models of Social Life (Princeton Studies in Complexity) , 2007 .

[60]  Sébastien Paris,et al.  Environmental abstraction and path planning techniques for realistic crowd simulation , 2006, Comput. Animat. Virtual Worlds.

[61]  R. Hughes The flow of human crowds , 2003 .

[62]  Luc Van Gool,et al.  Populating Ancient Pompeii with Crowds of Virtual Romans , 2007, VAST.

[63]  Dietrich Stauffer,et al.  Sociophysics simulations II: opinion dynamics , 2005, physics/0503115.

[64]  A. Schadschneider,et al.  Simulation of pedestrian dynamics using a two dimensional cellular automaton , 2001 .

[65]  Stephen Chenney,et al.  Flow tiles , 2004, SCA '04.

[66]  G. Nigel Gilbert A GENERIC MODEL OF COLLECTIVITIES , 2007, Cybern. Syst..

[67]  Jean-Paul Laumond,et al.  Real-time navigating crowds: scalable simulation and rendering: Research Articles , 2006 .

[68]  Catherine J. Harmer Handbook of Affective Sciences. Edited by R. J. Davidson, K. R. Scherer and H. H. Goldsmith. (Pp. 1119; £130.) Oxford University Press: Oxford. 2003. , 2004, Psychological Medicine.

[69]  Daniel Thalmann,et al.  Hierarchical Model for Real Time Simulation of Virtual Human Crowds , 2001, IEEE Trans. Vis. Comput. Graph..

[70]  Guillaume Deffuant,et al.  Comparing Extremism Propagation Patterns in Continuous Opinion Models , 2006, J. Artif. Soc. Soc. Simul..

[71]  Demetri Terzopoulos,et al.  Populating Reconstructed Archaeological Sites with Autonomous Virtual Humans , 2006, IVA.

[72]  Daniel Thalmann,et al.  Real-Time Scalable Motion Planning for Crowds , 2007, 2007 International Conference on Cyberworlds (CW'07).

[73]  Stacy Marsella,et al.  A domain-independent framework for modeling emotion , 2004, Cognitive Systems Research.

[74]  Mikel D. Petty Crowd Behavior Cognitive Model Architecture Design , 2005 .

[75]  T. Arentze,et al.  A need-based model of multi-day, multi-person activity generation , 2009 .

[76]  Jonathan Maïm,et al.  Reviving the Roman Odeon of Aphrodisias: Dynamic Animation and Variety Control of Crowds in Virtual Heritage , 2005 .

[77]  Benigno E. Aguirre,et al.  A Critical Review Of Emergency Evacuation Simulation Models , 2004 .

[78]  Dimitris N. Metaxas,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Group Behavior from Video: a Data-driven Approach to Crowd Simulation , 2022 .

[79]  Davy Janssens,et al.  Modeling Short-Term Dynamics in Activity-Travel Patterns: From Aurora to Feathers , 2008 .