On 3-D scene flow and structure recovery from multiview image sequences

Two novel systems computing dense three-dimensional (3-D) scene flow and structure from multiview image sequences are described in this paper. We do not assume rigidity of the scene motion, thus allowing for nonrigid motion in the scene. The first system, integrated model-based system (IMS), assumes that each small local image region is undergoing 3-D affine motion. Non-linear motion model fitting based on both optical flow constraints and stereo constraints is then carried out on each local region in order to simultaneously estimate 3-D motion correspondences and structure. The second system is based on extended gradient-based system (EGS), a natural extension of two-dimensional (2-D) optical flow computation. In this method, a new hierarchical rule-based stereo matching algorithm is first developed to estimate the initial disparity map. Different available constraints under a multiview camera setup are further investigated and utilized in the proposed motion estimation. We use image segmentation information to adopt and maintain the motion and depth discontinuities. Within the framework for EGS, we present two different formulations for 3-D scene flow and structure computation. One formulation assumes that initial disparity map is accurate, while the other does not. Experimental results on both synthetic and real imagery demonstrate the effectiveness of our 3-D motion and structure recovery schemes. Empirical comparison between IMS and EGS is also reported.

[1]  James S. Duncan,et al.  3-D Translational Motion and Structure from Binocular Image Flows , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Ye Zhang,et al.  Integrated 3D scene flow and structure recovery from multiview image sequences , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[3]  William H. Press,et al.  Numerical recipes in C , 2002 .

[4]  Kathleen M. Mutch Determining Object Translation Information Using Stereoscopic Motion , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Y. Aloimonos,et al.  Spatio-Temporal Stereo Using Multi-Resolution Subdivision Surfaces , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[6]  Dmitry B. Goldgof,et al.  Tracking Nonrigid Motion and Structure from 2D Satellite Cloud Images without Correspondences , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Alex Pentland,et al.  Recovery of Nonrigid Motion and Structure , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[9]  Michael J. Black,et al.  Estimating Optical Flow in Segmented Images Using Variable-Order Parametric Models With Local Deformations , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Steven D. Blostein,et al.  ROBUST ALGORITHMS FOR MOTION ESTIMATION BASED ON TWO SEQUENTIAL STEREO IMAGE PAIRS. , 1985 .

[11]  Ye Zhang,et al.  On 3D scene flow and structure estimation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[12]  Ingemar J. Cox,et al.  A maximum-flow formulation of the N-camera stereo correspondence problem , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[13]  Richard Szeliski,et al.  Fast Surface Interpolation Using Hierarchical Basis Functions , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Dana H. Ballard,et al.  Rigid body motion from depth and optical flow , 1983, Comput. Vis. Graph. Image Process..

[15]  Rama Chellappa,et al.  3-D Motion Estimation Using a Sequence of Noisy Stereo Images: Models, Estimation, and Uniqueness Results , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[17]  Michael J. Black,et al.  Skin and bones: multi-layer, locally affine, optical flow and regularization with transparency , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Narendra Ahuja,et al.  Optimal motion and structure estimation , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Chandra Kambhamettu,et al.  Hierarchical structure and nonrigid motion recovery from 2D monocular views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[20]  Xinhua Zhuang,et al.  Optic Flow Field Segmentation and Motion Estimation Using a Robust Genetic Partitioning Algorithm , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Dmitry B. Goldgof,et al.  Tracking of nonrigid motion and 3D structure from 2D image sequences without correspondences , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[22]  Sugata Ghosal,et al.  A Fast Scalable Algorithm for Discontinuous Optical Flow Estimation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  W Richards,et al.  Structure from stereo and motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[24]  Takeo Kanade,et al.  Three-dimensional scene flow , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  F. Dornaika,et al.  Stereo correspondence from motion correspondence , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[26]  Pertti Roivainen,et al.  3-D Motion Estimation in Model-Based Facial Image Coding , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[28]  Michael G. Strintzis,et al.  Model-Based Joint Motion and Structure Estimation from Stereo Images , 1997, Comput. Vis. Image Underst..

[29]  Hai Tao,et al.  A global matching framework for stereo computation , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[30]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[31]  Ingemar J. Cox,et al.  A Maximum Likelihood Stereo Algorithm , 1996, Comput. Vis. Image Underst..

[32]  Pascal Fua,et al.  Combining Stereo and Monocular Information to Compute Dense Depth Maps that Preserve Depth Discontinuities , 1991, IJCAI.

[33]  Michael J. Black Explaining optical flow events with parametrized spatio-temporal tracking , 1999, CVPR 1999.

[34]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[35]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[36]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[37]  Daniel P. Huttenlocher,et al.  Image segmentation using local variation , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[38]  Kannappan Palaniappan,et al.  Coupled, multi-resolution stereo and motion analysis , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[39]  Jake K. Aggarwal,et al.  The reconstruction of dynamic 3D structure of biological objects using stereo microscope images , 1997, Machine Vision and Applications.

[40]  Michael A. Penna The incremental approximation of nonrigid motion , 1994 .

[41]  Dmitry B. Goldgof,et al.  Extracting nonrigid motion and 3D structure of hurricanes from satellite image sequences without correspondences , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[42]  Allen M. Waxman,et al.  Binocular Image Flows: Steps Toward Stereo-Motion Fusion , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  John K. Tsotsos,et al.  Determination of Egomotion and Environmental Layout from Noisy Time-Varying Image Velocity in Binocular Image Sequences , 1987, IJCAI.