Performance Evaluation of Monolayer ZrS3 Transistors for Next-Generation Computing

Low-dimensional semiconductors, particularly 2-D semiconductors, with anisotropic electronic properties have the potential for realizing ultrascaled field-effect transistors (FETs). Here, we explore ZrS3, a highly anisotropic transition-metal trichalcogenide, for electronic device applications using density functional theory and transport simulations based on the nonequilibrium Green’s function (NEGF) framework. Monolayer ZrS3 enables the design of FETs with channel orientated along the direction having relatively low carrier effective mass while maintaining a moderate density of the state effective mass. These properties are desired for achieving high ON-state performance while maintaining excellent switching characteristics. The FETs are scalable down to 5-nm channel length, and both (n- and p-type) FETs show ${I}_{ \mathrm{\scriptscriptstyle ON}} > 2\times {10} ^{{3}}~\mu \text{A}/\mu \text{m}$ for high-performance logic device applications. To enhance the gate length scalability, we perform the underlap analysis and show that the FETs can be scaled down to 2.9-nm gate length with ${I}_{ \mathrm{\scriptscriptstyle ON}} > 1.1\times {10} ^{{3}}~\mu \text{A}/\mu \text{m}$ . In addition, by comparing the performance of the ZrS3-based FETs with the other 2-D materials, we find that they are promising candidates for future high-performance logic devices.

[1]  I. Radu,et al.  Computational Screening and Multiscale Simulation of Barrier-Free Contacts for 2D Semiconductor pFETs , 2022, 2022 International Electron Devices Meeting (IEDM).

[2]  Wen-Chang Zhou,et al.  High-Performance Monolayer BeN2 Transistors With Ultrahigh On-State Current: A DFT Coupled With NEGF Study , 2022, IEEE Transactions on Electron Devices.

[3]  Y. Chauhan,et al.  Two-Dimensional MoSi2N4: An Excellent 2-D Semiconductor for Field-Effect Transistors , 2022, IEEE Transactions on Electron Devices.

[4]  Y. Chauhan,et al.  Performance Investigation of p-FETs Based on Highly Air-Stable Monolayer Pentagonal PdSe2 , 2021, IEEE Transactions on Electron Devices.

[5]  J. Bokor,et al.  Ultralow contact resistance between semimetal and monolayer semiconductors , 2021, Nature.

[6]  Zhiyong Zhang,et al.  Sub-5 nm Monolayer MoS2 Transistors toward Low-Power Devices , 2021 .

[7]  J. Redwing,et al.  Benchmarking monolayer MoS2 and WS2 field-effect transistors , 2021, Nature communications.

[8]  A. Afzalian Ab initio perspective of ultra-scaled CMOS from 2D-material fundamentals to dynamically doped transistors , 2021, npj 2D Materials and Applications.

[9]  G. Gao,et al.  Bulk and Monolayer ZrS3 as Promising Anisotropic Thermoelectric Materials: A Comparative Study , 2020 .

[10]  Won Tae Kang,et al.  Schottky Barrier Variable Graphene/Multilayer-MoS2 Heterojunction Transistor Used to Overcome Short Channel Effects. , 2019, ACS applied materials & interfaces.

[11]  G. Pourtois,et al.  ATOMOS: An ATomistic MOdelling Solver for dissipative DFT transport in ultra-scaled HfS2 and Black phosphorus MOSFETs , 2019, 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD).

[12]  Lianmao Peng,et al.  Insight Into Ballisticity of Room-Temperature Carrier Transport in Carbon Nanotube Field-Effect Transistors , 2019, IEEE Transactions on Electron Devices.

[13]  L. Dai,et al.  Simulations of Quantum Transport in Sub-5-nm Monolayer Phosphorene Transistors , 2018, Physical Review Applied.

[14]  Thomas Zimmer,et al.  Charge-Based Modeling of Transition Metal Dichalcogenide Transistors Including Ambipolar, Trapping, and Negative Capacitance Effects , 2018, IEEE Transactions on Electron Devices.

[15]  Wei Wang,et al.  Metallic Graphene‐Like VSe2 Ultrathin Nanosheets: Superior Potassium‐Ion Storage and Their Working Mechanism , 2018, Advanced materials.

[16]  Lin Xiao,et al.  Many-Body Effect and Device Performance Limit of Monolayer InSe. , 2018, ACS applied materials & interfaces.

[17]  J. Bai,et al.  Band alignments and heterostructures of monolayer transition metal trichalcogenides MX3 (M = Zr, Hf; X = S, Se) and dichalcogenides MX2 (M = Tc, Re; X=S, Se) for solar applications. , 2018, Nanoscale.

[18]  F. Wang,et al.  Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications , 2017 .

[19]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  I. Radu,et al.  Material-Device-Circuit Co-optimization of 2D Material based FETs for Ultra-Scaled Technology Nodes , 2017, Scientific Reports.

[21]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[22]  Hua Zhang,et al.  Recent Advances in Sensing Applications of Two‐Dimensional Transition Metal Dichalcogenide Nanosheets and Their Composites , 2017 .

[23]  Amritesh Rai,et al.  Reconfigurable Complementary Monolayer MoTe2 Field-Effect Transistors for Integrated Circuits. , 2017, ACS nano.

[24]  Pu Huang,et al.  Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene , 2017 .

[25]  A. Molina‐Mendoza,et al.  Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides , 2017, 1702.01865.

[26]  Yogesh Singh Chauhan,et al.  Compact Modeling of Transition Metal Dichalcogenide based Thin body Transistors and Circuit Validation , 2017, IEEE Transactions on Electron Devices.

[27]  M. Carignano,et al.  First-Principles Study of the Transport Properties in Bulk and Monolayer MX3 (M = Ti, Zr, Hf and X = S, Se) Compounds , 2017 .

[28]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[29]  F. Peeters,et al.  Strong dichroic emission in the pseudo one dimensional material ZrS3. , 2016, Nanoscale.

[30]  G. Fiori,et al.  Performance of arsenene and antimonene double-gate MOSFETs from first principles , 2016, Nature Communications.

[31]  Hua Zhang,et al.  Two-dimensional semiconductors for transistors , 2016 .

[32]  Takashi Taniguchi,et al.  Two-dimensional metallic NbS2: growth, optical identification and transport properties , 2016 .

[33]  J. Dai,et al.  Group IVB transition metal trichalcogenides: a new class of 2D layered materials beyond graphene , 2016 .

[34]  K. Osada,et al.  Phonon Properties of Few-Layer Crystals of Quasi-One-Dimensional ZrS3 and ZrSe3 , 2016 .

[35]  Mathieu Luisier,et al.  Phonon-limited performance of single-layer, single-gate black phosphorus n- and p-type field-effect transistors , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[36]  M I Katsnelson,et al.  Germanene: the germanium analogue of graphene , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  Yongtao Li,et al.  Novel Optical and Electrical Transport Properties in Atomically Thin WSe2/MoS2 p–n Heterostructures , 2015 .

[38]  Jinlong Yang,et al.  Single layer of MX₃ (M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics. , 2015, Physical chemistry chemical physics : PCCP.

[39]  G. Dujardin,et al.  Silicene, a promising new 2D material , 2015 .

[40]  Y. Chauhan,et al.  Doping Strategies for Monolayer MoS2 via Surface Adsorption: A Systematic Study , 2014 .

[41]  Yi Xie,et al.  Zirconium trisulfide ultrathin nanosheets as efficient catalysts for water oxidation in both alkaline and neutral solutions , 2014 .

[42]  Xiaoyan Liu,et al.  Ballistic Transport in Monolayer Black Phosphorus Transistors , 2014, IEEE Transactions on Electron Devices.

[43]  A. Sumant,et al.  All two-dimensional, flexible, transparent, and thinnest thin film transistor. , 2014, Nano letters.

[44]  Jing Guo,et al.  On Monolayer ${\rm MoS}_{2}$ Field-Effect Transistors at the Scaling Limit , 2013, IEEE Transactions on Electron Devices.

[45]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[46]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[47]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.

[48]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[49]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[50]  W. Hu,et al.  Mica, a Potential Two‐Dimensional‐Crystal Gate Insulator for Organic Field‐Effect Transistors , 2011, Advanced materials.

[51]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[52]  K. Novoselov Nobel Lecture: Graphene: Materials in the Flatland , 2011 .

[53]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[54]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[55]  R. Service,et al.  Is Silicon's Reign Nearing Its End? , 2009, Science.

[56]  N. Marzari,et al.  Band structure and quantum conductance of nanostructures from maximally localized Wannier functions: the case of functionalized carbon nanotubes. , 2005, Physical review letters.

[57]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[58]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[59]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[60]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[61]  R. Landauer,et al.  Generalized many-channel conductance formula with application to small rings. , 1985, Physical review. B, Condensed matter.

[62]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[63]  Nityasagar Jena,et al.  ZrS3/MS2 and ZrS3/MXY (M Mo, W; X, Y S, Se, Te; X ≠ Y) type-II van der Waals hetero-bilayers: Prospective candidates in 2D excitonic solar cells , 2020 .

[64]  Y. Chauhan,et al.  Compact Modeling of Multi-Layered MoS2 FETs Including Negative Capacitance Effect , 2020, IEEE Journal of the Electron Devices Society.

[65]  G. Fiori,et al.  An Open-Source Multiscale Framework for the Simulation of Nanoscale Devices , 2014, IEEE Transactions on Electron Devices.

[66]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.