SMT at the International Maritime Organization: experiences with combining in-house corpora with out-of-domain corpora
暂无分享,去创建一个
Bruno Pouliquen | Marcin Junczys-Dowmunt | Blanca Pinero | Michal Ziemski | Marcin Junczys-Dowmunt | B. Pouliquen | Michal Ziemski | B. Pinero
[1] Jeffrey Dean,et al. Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.
[2] F ChenStanley,et al. An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.
[3] Nadir Durrani,et al. Can Markov Models Over Minimal Translation Units Help Phrase-Based SMT? , 2013, ACL.
[4] Xiaoyi Ma,et al. Champollion: A Robust Parallel Text Sentence Aligner , 2006, LREC.
[5] Stanley F. Chen,et al. An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.
[6] Joel D. Martin,et al. Improving Translation Quality by Discarding Most of the Phrasetable , 2007, EMNLP.
[7] Philip Koehn,et al. Statistical Machine Translation , 2010, EAMT.
[8] Salim Roukos,et al. Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.
[9] Bruno Pouliquen,et al. Large-scale multiple language translation accelerator at the United Nations , 2013 .
[10] Rico Sennrich,et al. Perplexity Minimization for Translation Model Domain Adaptation in Statistical Machine Translation , 2012, EACL.
[11] Philipp Koehn,et al. Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.
[12] Philipp Koehn,et al. Scalable Modified Kneser-Ney Language Model Estimation , 2013, ACL.