Minimax and maximin facility location problems on a sphere

The problem dealt with in this article is as follows. There are n “demand points” on a sphere. Each demand point has a weight which is a positive constant. A facility must be located so that the maximum of the weighted distances (distances are the shortest arcs on the surface of the sphere) is minimized; this is called the minimax problem. Alternatively, in the maximin problem, the minimum weighted distance is maximized. A setup cost associated with each demand point may be added for generality. It is shown that any maximin problem can be reparametrized into a minimax problem. A method for finding local minimax points is described and conditions under which these are global are derived. Finally, an efficient algorithm for finding the global minimax point is constructed.