SPECT imaging of myocardial infarction using 99mTc-labeled C2A domain of synaptotagmin I in a porcine ischemia-reperfusion model.

[1]  Xiaoguang Zhu,et al.  Imaging Acute Cardiac Cell Death: Temporal and Spatial Distribution of 99mTc-Labeled C2A in the Area at Risk After Myocardial Ischemia and Reperfusion , 2007, Journal of Nuclear Medicine.

[2]  Shun-dong Ji,et al.  99mTc-labeled C2A domain of synaptotagmin I as a target-specific molecular probe for noninvasive imaging of acute myocardial infarction. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[3]  J. Michel,et al.  99mTc-annexin V and 111In-antimyosin antibody uptake in experimental myocardial infarction in rats , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[4]  B. Jugdutt,et al.  Apoptosis and oncosis in acute coronary syndromes: Assessment and implications , 2005, Molecular and Cellular Biochemistry.

[5]  K. Nakajima,et al.  Detection of cardiomyocyte death in a rat model of ischemia and reperfusion using 99mTc-labeled annexin V. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[6]  Kevin M Brindle,et al.  Detection of apoptosis using the C2A domain of synaptotagmin I. , 2004, Bioconjugate chemistry.

[7]  Guido Slegers,et al.  Apoptosis-detecting radioligands: current state of the art and future perspectives , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[8]  F. Blankenberg Recent advances in the imaging of programmed cell death. , 2004, Current pharmaceutical design.

[9]  P. Thimister,et al.  In vivo detection of cell death in the area at risk in acute myocardial infarction. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[10]  J. Vinten-johansen,et al.  Myocardial apoptosis and ischemic preconditioning. , 2002, Cardiovascular research.

[11]  W. Van den Broeck,et al.  Morphological and Biochemical Aspects of Apoptosis, Oncosis and Necrosis , 2002, Anatomia, histologia, embryologia.

[12]  Ming Zhao,et al.  Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent , 2001, Nature Medicine.

[13]  M. Rusckowski,et al.  Different chelators and different peptides together influence the in vitro and mouse in vivo properties of 99Tcm , 2001, Nuclear medicine communications.

[14]  P. Doevendans,et al.  Visualisation of cell death in vivo in patients with acute myocardial infarction , 2000, The Lancet.

[15]  S. Hatem,et al.  Early redistribution of plasma membrane phosphatidylserine during apoptosis of adult rat ventricular myocytes in vitro , 1999, Basic Research in Cardiology.

[16]  B. Maisch Woran gehen Herzmuskelzellen zugrunde? — Nekrose, Onkose und Apoptose , 1999, Herz.

[17]  B. Maisch How cardiac cells die--necrosis, oncosis and apoptosis. , 1999, Herz.

[18]  F. Debruyne,et al.  In vivo and in vitro characterizations of three 99mTc-labeled monoclonal antibody G250 preparations. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[19]  T. Südhof,et al.  Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. , 1998, Biochemistry.

[20]  R. Davis,et al.  In vivo detection and imaging of phosphatidylserine expression during programmed cell death. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Schaper,et al.  Cardiomyocyte apoptosis in acute and chronic conditions , 1998, Basic Research in Cardiology.

[22]  J. Walker,et al.  Localization of annexin V in the adult and neonatal heart. , 1997, Biochemical and biophysical research communications.

[23]  D. Gibson,et al.  Binding and phagocytosis of apoptotic vascular smooth muscle cells is mediated in part by exposure of phosphatidylserine. , 1995, Circulation research.

[24]  K. Verbeke,et al.  Comparative evaluation of 99Tcm-Hynic‐HSA and 99Tcm-MAG3‐HSA as possible blood pool agents , 1995, Nuclear medicine communications.

[25]  J. Ballinger,et al.  Labelling small quantities of monoclonal antibodies and their F(ab')2 fragments with technetium-99m. , 1995, Nuclear medicine and biology.

[26]  S. Sprang,et al.  Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold , 1995, Cell.

[27]  C. Lazure,et al.  Identification and immunolocalisation of annexins V and VI, the major cardiac annexins, in rat heart. , 1993, Cardiovascular research.

[28]  R. Donato,et al.  Immunocytochemical localization of annexin V (CaBP33), a Ca2+‐dependent phospholipid‐and membrane‐binding protein, in the rat nervous system and skeletal muscles and in the porcine heart , 1992, Journal of cellular physiology.

[29]  V. Fadok,et al.  Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. , 1992, Journal of immunology.

[30]  P. Beaumier,et al.  Targeted proteins for diagnostic imaging: does chemistry make a difference? , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[31]  R. Donato,et al.  Characterization of mammalian heart annexins with special reference to CaBP33 (annexin V) , 1990, FEBS letters.

[32]  L. Koss,et al.  Flow cytometric analysis of the DNA content in cultured human brain tumor cells , 1980, Virchows Archiv. B, Cell pathology including molecular pathology.