Multi-Objective Fuzzy Model for Optimal Siting and Sizing of DG Units to Reduce Losses Using Genetic Algorithm

This paper uses a probability (fuzzy) model for siting and sizing of Distributed Generation (DG) units to reduce power losses as well as cost of the plan with multi-objective function in distribution networks. In order to consider the uncertainty in the load points, the demand power at each node is modeled with the fuzzy set theory in the form of a triangular probability distribution. For analyzing the network, the load distribution, which is implemented with fuzzy set theory for modeling the production model and fuzzy load, has been used. In this quadratic problem, in the first step by minimizing the fuzzy economic cost function and the amount of specific risk (grid optimization) of the network, the Genetic Algorithm (GA) reaches non-dominant solutions, and in the second step, using max-min method, it tries to select the appropriate answer. This method can determine the types of modeling of DGs, including PQ and PV, and because of the uncertainty of the load points, makes the positioning and determination of the DG capacity in a more realistic way. This methodology has been implemented in MATLAB based on GA with technical and economic review to reduce energy losses. Results show the ability of the method to solve the problem.

[1]  F. Pilo,et al.  A multiobjective evolutionary algorithm for the sizing and siting of distributed generation , 2005, IEEE Transactions on Power Systems.

[2]  N. Mithulananthan,et al.  Distributed Generator Placement in Power Distribution System Using Genetic Algorithm to Reduce Losses , 2004 .

[3]  W. El-khattam,et al.  Optimal investment planning for distributed generation in a competitive electricity market , 2004, IEEE Transactions on Power Systems.

[4]  Taher Niknam,et al.  Impact of distributed generation on volt/Var control in distribution networks , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[5]  I. J. Ramírez-Rosado,et al.  New multiobjective tabu search algorithm for fuzzy optimal planning of power distribution systems , 2006, IEEE Transactions on Power Systems.

[6]  Fabrizio Giulio Luca Pilo,et al.  Optimal distributed generation allocation in MV distribution networks , 2001, PICA 2001. Innovative Computing for Power - Electric Energy Meets the Market. 22nd IEEE Power Engineering Society. International Conference on Power Industry Computer Applications (Cat. No.01CH37195).

[7]  V. H. MendezQuezada,et al.  Assessment of Energy Distribution Losses for Increasing Penetration of Distributed Generation , 2006 .

[8]  R. Ramakumar,et al.  An approach to quantify the technical benefits of distributed generation , 2004, IEEE Transactions on Energy Conversion.

[9]  Carmen L. T. Borges,et al.  Optimal distributed generation allocation for reliability, losses, and voltage improvement , 2006 .

[10]  João Tomé Saraiva,et al.  Impact on some planning decisions from a fuzzy modelling of power systems , 1993 .

[11]  Johan Driesen,et al.  Optimal placement and sizing of distributed generator units using genetic optimization algorithms , 2005 .

[12]  K. Kauhaniemi,et al.  Fuzzy Models and Techniques for the Calculation of Radial Distribution Networks , 1993, Proceedings. Joint International Power Conference Athens Power Tech,.

[13]  Bala Venkatesh,et al.  Optimal reconfiguration of radial distribution systems to maximize loadability , 2004 .

[14]  Pierluigi Siano,et al.  Distributed Generation Capacity Evaluation Using Combined Genetic Algorithm and OPF , 2007 .