Complex genetics of glaucoma susceptibility.

Glaucoma describes a group of diseases that kill retinal ganglion cells. There are different types of glaucoma, and each appears to be genetically heterogeneous. Different glaucoma genes have been identified, but these genes account for only a small proportion of glaucoma. Most glaucoma cases appear to be multifactorial, and are likely affected by multiple interacting loci. A number of genetic susceptibility factors have been suggested to contribute to glaucoma. These factors fit into two broad groups, those affecting intraocular pressure and those important in modulating retinal ganglion cell viability. Defining the complex genetics of glaucoma will require significant further study of the human disease and animal models. Genetic approaches are essential and will be enhanced by recently developed genomic and proteomic technologies. These technologies will provide valuable clues about pathogenesis for subsequent testing. In this review, we focus on endogenous genetic susceptibility factors and on how experimental studies will be valuable for dissecting the multifactorial complexity of their interactions.

[1]  B. S. Fine,et al.  Pigmentary "glaucoma". A histologic study. , 1974, Transactions - American Academy of Ophthalmology and Otolaryngology. American Academy of Ophthalmology and Otolaryngology.

[2]  M. Sarfarazi,et al.  Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. , 1997, Human molecular genetics.

[3]  S. Roychoudhury,et al.  Distribution of p53 codon 72 polymorphism in Indian primary open angle glaucoma patients. , 2002, Molecular vision.

[4]  Richard S. Smith,et al.  Anterior segment development relevant to glaucoma. , 2004, The International journal of developmental biology.

[5]  M. C. Leske,et al.  Risk factors for open-angle glaucoma. The Barbados Eye Study. , 1995, Archives of ophthalmology.

[6]  B. Yue,et al.  Myocilin is associated with mitochondria in human trabecular meshwork cells , 2002, Journal of cellular physiology.

[7]  T. Zimmerman,et al.  Inheritance and the pigmentary dispersion syndrome. , 1983, Ophthalmic paediatrics and genetics.

[8]  B. Olsen,et al.  Age-dependent iris abnormalities in collagen XVIII/endostatin deficient mice with similarities to human pigment dispersion syndrome. , 2003, Investigative ophthalmology & visual science.

[9]  G. Spaeth,et al.  Spectrum of trabecular pigmentation in open-angle glaucoma: a clinicopathologic study. , 1976, Transactions. Section on Ophthalmology. American Academy of Ophthalmology and Otolaryngology.

[10]  R. Casson,et al.  Normal tension glaucoma is not associated with the common apolipoprotein E gene polymorphisms , 2004, British Journal of Ophthalmology.

[11]  J. Bruder,et al.  Interaction of the Adenovirus 14.7-kDa Protein with FLICE Inhibits Fas Ligand-induced Apoptosis* , 1998, The Journal of Biological Chemistry.

[12]  D. Epstein,et al.  Experimental obstruction to aqueous outflow by pigment particles in living monkeys. , 1986, Investigative ophthalmology & visual science.

[13]  J. Polansky,et al.  Cellular pharmacology and molecular biology of the trabecular meshwork inducible glucocorticoid response gene product. , 1997, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[14]  J. Murray,et al.  Pitx2 Regulates Procollagen Lysyl Hydroxylase (Plod) Gene Expression , 2001, The Journal of cell biology.

[15]  E. Buckley,et al.  Axenfeld-Rieger syndrome. A spectrum of developmental disorders. , 1985, Survey of ophthalmology.

[16]  Y. Buys,et al.  Defining the pathogenicity of optineurin in juvenile open-angle glaucoma. , 2004, Investigative ophthalmology & visual science.

[17]  J. Wiggs,et al.  Inheritance of glaucoma and genetic counseling of glaucoma patients. , 1993, International ophthalmology clinics.

[18]  W. Green,et al.  Scanning and transmission electron microscopic studies of two cases of pigment dispersion syndrome. , 1981, American journal of ophthalmology.

[19]  K. Herrup,et al.  Dissecting complex genetic interactions that influence theEngrailed-1 limb phenotype , 2004, Mammalian Genome.

[20]  D. Johnson,et al.  Myocilin and glaucoma: A TIGR by the tail? , 2000, Archives of ophthalmology.

[21]  T. Rezaie,et al.  Optineurin in primary open angle glaucoma. , 2003, Ophthalmology clinics of North America.

[22]  D. Bredesen,et al.  Coupling endoplasmic reticulum stress to the cell death program , 2004, Cell Death and Differentiation.

[23]  T. Aung,et al.  Prevalence of optineurin sequence variants in adult primary open angle glaucoma: implications for diagnostic testing , 2003, Journal of medical genetics.

[24]  A. Mikelsaar,et al.  Polymorphic glutathione S-transferase M1 is a risk factor of primary open-angle glaucoma among Estonians. , 2000, Experimental eye research.

[25]  Young H. Kwon,et al.  Variations in the myocilin gene in patients with open-angle glaucoma. , 2002, Archives of ophthalmology.

[26]  M. C. Leske,et al.  Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. , 2002, Archives of ophthalmology.

[27]  Randy L. Johnson,et al.  Targeted Disruption of the Myocilin Gene (Myoc) Suggests that Human Glaucoma-Causing Mutations Are Gain of Function , 2001, Molecular and Cellular Biology.

[28]  James E Morgan,et al.  Optic nerve head structure in glaucoma: Astrocytes as mediators of axonal damage , 2000, Eye.

[29]  C. Scriver,et al.  The Metabolic and Molecular Bases of Inherited Disease, 8th Edition 2001 , 2001, Journal of Inherited Metabolic Disease.

[30]  Doyle Jw,et al.  New aqueous inflow inhibitors. , 1999 .

[31]  H. Quigley,et al.  Neuronal death in glaucoma , 1999, Progress in Retinal and Eye Research.

[32]  M. Walter,et al.  Identification of target genes regulated by FOXC1 using nickel agarose-based chromatin enrichment. , 2004, Investigative ophthalmology & visual science.

[33]  Douglas R. Anderson,et al.  Collaborative Normal Tension Glaucoma Study , 2003, Current opinion in ophthalmology.

[34]  Xiangjun Yang,et al.  Caspase-independent component of retinal ganglion cell death, in vitro. , 2004, Investigative ophthalmology & visual science.

[35]  H. Tanihara,et al.  Overexpression of myocilin in cultured human trabecular meshwork cells. , 2004, Experimental cell research.

[36]  M. Wax,et al.  Glial modulation of retinal ganglion cell death in glaucoma. , 2003, Journal of glaucoma.

[37]  Yan Li,et al.  Susceptibility to Neurodegeneration in a Glaucoma Is Modified by Bax Gene Dosage , 2005, PLoS genetics.

[38]  M. Boehnke,et al.  Cosegregation of open-angle glaucoma and the nail-patella syndrome. , 1997, American journal of ophthalmology.

[39]  R. Stone,et al.  A3 adenosine receptors regulate Cl-channels of nonpigmented ciliary epithelial cells. , 1999, American journal of physiology. Cell physiology.

[40]  V. Sheffield,et al.  Evaluation of the myocilin (MYOC) glaucoma gene in monkey and human steroid-induced ocular hypertension. , 2001, Investigative ophthalmology & visual science.

[41]  E. Traboulsi,et al.  A third locus (GLC1D) for adult-onset primary open-angle glaucoma maps to the 8q23 region. , 1998, American journal of ophthalmology.

[42]  D. Vollrath,et al.  Reversal of mutant myocilin non-secretion and cell killing: implications for glaucoma , 2004 .

[43]  R. Hitchings,et al.  Normal tension glaucoma—a practical approach , 1998, The British journal of ophthalmology.

[44]  W. Hur,et al.  Expression of wild-type and truncated myocilins in trabecular meshwork cells: their subcellular localizations and cytotoxicities. , 2002, Investigative ophthalmology & visual science.

[45]  K. Choy,et al.  Truncations in the TIGR gene in individuals with and without primary open-angle glaucoma. , 2000, Investigative ophthalmology & visual science.

[46]  T. Borrás Gene expression in the trabecular meshwork and the influence of intraocular pressure , 2003, Progress in Retinal and Eye Research.

[47]  D. Bok,et al.  Immunolocalization of electrogenic sodium-bicarbonate cotransporters pNBC1 and kNBC1 in the rat eye. , 2001, American journal of physiology. Renal physiology.

[48]  C. Morton,et al.  Proteomics Reveal Cochlin Deposits Associated with Glaucomatous Trabecular Meshwork* , 2005, Journal of Biological Chemistry.

[49]  T. O'brien Mutagenesis and Genetic Screens in the Mouse , 2001 .

[50]  D. Vollrath,et al.  A cellular assay distinguishes normal and mutant TIGR/myocilin protein. , 1999, Human molecular genetics.

[51]  Y. Kanai,et al.  Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities , 1999, Nature Genetics.

[52]  P. Holt,et al.  Immunomorphologic studies of macrophages and MHC class II-positive dendritic cells in the iris and ciliary body of the rat, mouse, and human eye. , 1994, Investigative ophthalmology & visual science.

[53]  Sa Tang,et al.  Mutations in the optineurin gene in Japanese patients with primary open‐angle glaucoma and normal tension glaucoma , 2004, American journal of medical genetics. Part A.

[54]  T H Roderick,et al.  Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. , 1998, Investigative ophthalmology & visual science.

[55]  M. C. Leske,et al.  The epidemiology of open-angle glaucoma: a review. , 1983, American journal of epidemiology.

[56]  W. Hur,et al.  Accumulation of mutant myocilins in ER leads to ER stress and potential cytotoxicity in human trabecular meshwork cells. , 2003, Biochemical and biophysical research communications.

[57]  L. Missotten,et al.  Risk factors for open-angle glaucoma: a case-control study. , 2001, Journal of clinical epidemiology.

[58]  Sun-Yuan Kung,et al.  A Systolic Design Methodology with Application to Full-Search Block-Matching Architectures , 1998, J. VLSI Signal Process..

[59]  P. Kramer,et al.  Mapping a gene for adult-onset primary open-angle glaucoma to chromosome 3q. , 1997, American journal of human genetics.

[60]  P. Lichter,et al.  Erratum: Loss-of-function mutations in the LIM-homeodomain gene, LMX1B, in nail-patella syndrome (Human Molecular Genetics (1998) 7 (1091-1098)) , 1998 .

[61]  W. Willett,et al.  Dietary fat consumption and primary open-angle glaucoma. , 2002, The American journal of clinical nutrition.

[62]  Young H. Kwon,et al.  Non-secretion of mutant proteins of the glaucoma gene myocilin in cultured trabecular meshwork cells and in aqueous humor. , 2001, Human molecular genetics.

[63]  T. Borrás,et al.  Altered secretion of a TIGR/MYOC mutant lacking the olfactomedin domain. , 2000, Biochimica et biophysica acta.

[64]  M. Wilson,et al.  Normal tension glaucomaa , 2002 .

[65]  D. Ovchinnikov,et al.  Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome , 1998, Nature Genetics.

[66]  E. Tamm Myocilin and glaucoma: facts and ideas , 2002, Progress in Retinal and Eye Research.

[67]  N. Furuyoshi,et al.  Ultrastructural changes in the trabecular meshwork of juvenile glaucoma. , 1997, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[68]  F. Tsai,et al.  Distributions of p53 codon 72 polymorphism in primary open angle glaucoma , 2002, The British journal of ophthalmology.

[69]  Jian Kang,et al.  Interaction of an Adenovirus E3 14.7-Kilodalton Protein with a Novel Tumor Necrosis Factor Alpha-Inducible Cellular Protein Containing Leucine Zipper Domains , 1998, Molecular and Cellular Biology.

[70]  R. Massof,et al.  Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. , 1983, American journal of ophthalmology.

[71]  R. Ritch,et al.  Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. , 2005, Human molecular genetics.

[72]  A. Verkman,et al.  Aquaporin Deletion in Mice Reduces Intraocular Pressure and Aqueous Fluid Production , 2002, The Journal of general physiology.

[73]  Richard S. Smith,et al.  Genetically Increasing Myoc Expression Supports a Necessary Pathologic Role of Abnormal Proteins in Glaucoma , 2004, Molecular and Cellular Biology.

[74]  S. Orgül,et al.  Autonomic nervous system, circadian rhythms, and primary open-angle glaucoma. , 2004, Survey of ophthalmology.

[75]  S. John,et al.  Glaucoma: Thinking in new ways—a rôle for autonomous axonal self-destruction and other compartmentalised processes? , 2005, Progress in Retinal and Eye Research.

[76]  Y. Buys,et al.  Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. , 2002, American journal of human genetics.

[77]  Douglas R. Anderson,et al.  Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group. , 1998, American journal of ophthalmology.

[78]  J. Rohen,et al.  Ultrastructure of the trabecular meshwork in untreated cases of primary open-angle glaucoma (POAG). , 1993, Experimental eye research.

[79]  M. Fautsch,et al.  Recombinant TIGR/MYOC increases outflow resistance in the human anterior segment. , 2000, Investigative ophthalmology & visual science.

[80]  A. Clark,et al.  The similarity of protein expression in trabecular meshwork and lamina cribrosa: implications for glaucoma. , 2000, Experimental eye research.

[81]  A. Neufeld,et al.  Tumor necrosis factor‐α: A potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head , 2000 .

[82]  Ronald W. Davis,et al.  Maximizing the potential of functional genomics , 2004, Nature Reviews Genetics.

[83]  J. Dickinson,et al.  The apolipoprotein epsilon4 gene is associated with elevated risk of normal tension glaucoma. , 2002, Molecular vision.

[84]  Y. Leung,et al.  Different optineurin mutation pattern in primary open-angle glaucoma. , 2003, Investigative ophthalmology & visual science.

[85]  A. Clark,et al.  Dexamethasone-induced ocular hypertension in perfusion-cultured human eyes. , 1995, Investigative ophthalmology & visual science.

[86]  V. Sheffield,et al.  Identification of a Gene That Causes Primary Open Angle Glaucoma , 1997, Science.

[87]  Robert N Weinreb,et al.  Aqueous humor dynamics in mice. , 2003, Investigative ophthalmology & visual science.

[88]  G. Arden,et al.  Differential effects of light and alcohol on the electro-oculographic responses of patients with age-related macular disease. , 2003, Investigative ophthalmology & visual science.

[89]  D. Epstein,et al.  Gene transfer of dominant-negative RhoA increases outflow facility in perfused human anterior segment cultures. , 2002, Molecular vision.

[90]  R. Ritch A unification hypothesis of pigment dispersion syndrome. , 1996, Transactions of the American Ophthalmological Society.

[91]  Junjian Z. Chen,et al.  A new clue to glaucoma pathogenesis. , 2003, The American journal of medicine.

[92]  Frank H. Mover Genetic Variations in the Fine Structure and Ontogeny of Mouse Melanin Granules. , 1966 .

[93]  H. Garchon,et al.  A novel frameshift founder mutation in the cytochrome P450 1B1 (CYP1B1) gene is associated with primary congenital glaucoma in Morocco , 2002, Clinical genetics.

[94]  J. Haines,et al.  Lack of association of mutations in optineurin with disease in patients with adult-onset primary open-angle glaucoma. , 2003, Archives of ophthalmology.

[95]  M. Jackson,et al.  p53 regulates apoptotic retinal ganglion cell death induced by N-methyl-D-aspartate. , 2002, Molecular vision.

[96]  D. Stephan,et al.  Gene and Protein Expression Changes in Human Trabecular Meshwork Cells Treated with Transforming Growth Factor-β , 2004 .

[97]  B. Prum,et al.  The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration , 2000 .

[98]  Y. Levy,et al.  Red and/or blonde hair association with pigmentary glaucoma in Israel , 2002, Eye.

[99]  M. Wax,et al.  TNF-alpha and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes. , 2001, Investigative ophthalmology & visual science.

[100]  J. Alvarado,et al.  Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. , 1984, Ophthalmology.

[101]  C. S. Ricard,et al.  Differential gene expression in astrocytes from human normal and glaucomatous optic nerve head analyzed by cDNA microarray , 2002, Glia.

[102]  Michael G. Anderson,et al.  Interacting loci cause severe iris atrophy and glaucoma in DBA/2J mice , 1999, Nature Genetics.

[103]  K. Ariizumi,et al.  Molecular Cloning of a Dendritic Cell-associated Transmembrane Protein, DC-HIL, That Promotes RGD-dependent Adhesion of Endothelial Cells through Recognition of Heparan Sulfate Proteoglycans* , 2001, The Journal of Biological Chemistry.

[104]  R. Nickells Apoptosis of retinal ganglion cells in glaucoma: an update of the molecular pathways involved in cell death. , 1999, Survey of ophthalmology.

[105]  R. Nickells The molecular biology of retinal ganglion cell death: caveats and controversies , 2004, Brain Research Bulletin.

[106]  M. C. Leske,et al.  A genome-wide scan for primary open-angle glaucoma (POAG): the Barbados Family Study of Open-Angle Glaucoma , 2003, Human Genetics.

[107]  B. Liu,et al.  Glaucomatous Optic Neuropathy: When Glia Misbehave , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[108]  A. Child,et al.  Localization of a locus (GLC1B) for adult-onset primary open angle glaucoma to the 2cen-q13 region. , 1996, Genomics.

[109]  W. Green,et al.  Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. , 1981, Archives of ophthalmology.

[110]  Richard A Stone,et al.  Knockout of A3 adenosine receptors reduces mouse intraocular pressure. , 2002, Investigative ophthalmology & visual science.

[111]  J. Morissette,et al.  Homozygotes carrying an autosomal dominant TIGR mutation do not manifest glaucoma , 1998, Nature Genetics.

[112]  B. Hogan,et al.  Haploinsufficient Bmp4 ocular phenotypes include anterior segment dysgenesis with elevated intraocular pressure , 2001, BMC Genetics.

[113]  Henri-Jean Garchon,et al.  Apolipoprotein E-promoter single-nucleotide polymorphisms affect the phenotype of primary open-angle glaucoma and demonstrate interaction with the myocilin gene. , 2002, American journal of human genetics.

[114]  S. Saule,et al.  Characterization of a new melanocyte‐specific gene (QNR‐71) expressed in v‐myc‐transformed quail neuroretina. , 1996, The EMBO journal.

[115]  M. Civan,et al.  The ins and outs of aqueous humour secretion. , 2004, Experimental eye research.

[116]  S. Saule,et al.  The AP-3-dependent targeting of the melanosomal glycoprotein QNR-71 requires a di-leucine-based sorting signal. , 2001, Journal of cell science.

[117]  M. Wax,et al.  Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice , 2004, Brain Research.

[118]  Douglas R. Anderson,et al.  The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Collaborative Normal-Tension Glaucoma Study Group. , 1998, American journal of ophthalmology.

[119]  M. Krawczak,et al.  A major marker for normal tension glaucoma: association with polymorphisms in the OPA1 gene , 2001, Human Genetics.

[120]  A. Cvekl,et al.  Identification of Genes Downstream of Pax6 in the Mouse Lens Using cDNA Microarrays* 210 , 2002, The Journal of Biological Chemistry.

[121]  E. Jabs,et al.  Complete cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2. , 1994, The Journal of biological chemistry.

[122]  Michael G. Anderson,et al.  By Altering Ocular Immune Privilege, Bone Marrow–derived Cells Pathogenically Contribute to DBA/2J Pigmentary Glaucoma , 2003, The Journal of experimental medicine.

[123]  P. Mitchell,et al.  Analysis of optineurin (OPTN) gene mutations in subjects with and without glaucoma: the Blue Mountains Eye Study , 2004, Clinical & experimental ophthalmology.

[124]  J. Haines,et al.  A gene responsible for the pigment dispersion syndrome maps to chromosome 7q35-q36. , 1997, Archives of ophthalmology.

[125]  M. Walter PITs and FOXes in ocular genetics: the Cogan lecture. , 2003, Investigative ophthalmology & visual science.

[126]  Richard S. Smith,et al.  Intraocular pressure in genetically distinct mice: an update and strain survey , 2001, BMC Genetics.

[127]  Robert N Weinreb,et al.  Optic nerve damage in mice with a targeted type I collagen mutation. , 2004, Investigative ophthalmology & visual science.

[128]  P. Kramer,et al.  GLC1F, a new primary open-angle glaucoma locus, maps to 7q35-q36. , 1999, Archives of ophthalmology.

[129]  S. De Flora,et al.  Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients. , 2003, The American journal of medicine.

[130]  M. Schwartz,et al.  Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent. , 2002, Investigative ophthalmology & visual science.

[131]  A. Izzotti,et al.  Glutathione S-transferase M1 and its implications in glaucoma pathogenesis: a controversial matter. , 2004, Experimental eye research.

[132]  J. Haines,et al.  A genomewide scan identifies novel early-onset primary open-angle glaucoma loci on 9q22 and 20p12. , 2004, American journal of human genetics.

[133]  S. John,et al.  Mouse genetics: a tool to help unlock the mechanisms of glaucoma. , 1999, Journal of glaucoma.

[134]  A. Child,et al.  Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region. , 1998, American journal of human genetics.

[135]  Michael G. Anderson,et al.  Genetic modification of glaucoma associated phenotypes between AKXD-28/Ty and DBA/2J mice , 2001, BMC Genetics.

[136]  H. Quigley,et al.  Ganglion cell death in glaucoma: pathology recapitulates ontogeny. , 1995, Australian and New Zealand journal of ophthalmology.

[137]  J. Lupski,et al.  Multiple CYP1B1 mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus. , 2000, Human molecular genetics.

[138]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[139]  C. L. Schlamp,et al.  Bax-dependent and independent pathways of retinal ganglion cell death induced by different damaging stimuli. , 2000, Experimental eye research.

[140]  M. Akimoto,et al.  Gene microarray analysis of experimental glaucomatous retina from cynomologous monkey. , 2003, Investigative ophthalmology & visual science.

[141]  F. Tsai,et al.  Association of tumour necrosis factor alpha −308 gene polymorphism with primary open-angle glaucoma in Chinese , 2003, Eye.

[142]  Sa Tang,et al.  The association between Japanese primary open-angle glaucoma and normal tension glaucoma patients and the optineurin gene , 2003, Human Genetics.

[143]  J. Polansky,et al.  Gene Structure and Properties of TIGR, an Olfactomedin-related Glycoprotein Cloned from Glucocorticoid-induced Trabecular Meshwork Cells* , 1998, The Journal of Biological Chemistry.

[144]  P. Chinnery,et al.  Apolipoprotein E promoter polymorphisms do not have a major influence on the risk of developing primary open angle glaucoma. , 2004, Molecular vision.

[145]  Randy L. Johnson,et al.  lmx1b, a LIM homeodomain class transcription factor, is necessary for normal development of multiple tissues in the anterior segment of the murine eye , 2000, Genesis.

[146]  D. R. Anderson,et al.  Introductory comments on blood flow autoregulation in the optic nerve head and vascular risk factors in glaucoma. , 1999, Survey of ophthalmology.

[147]  D. Woodward,et al.  The inflow and outflow of anti-glaucoma drugs. , 2004, Trends in pharmacological sciences.

[148]  Young H. Kwon,et al.  Evaluation of optineurin sequence variations in 1,048 patients with open-angle glaucoma. , 2003, American journal of ophthalmology.

[149]  D. Vollrath,et al.  Molecular and clinical evaluation of a patient hemizygous for TIGR/MYOC. , 2001, Archives of ophthalmology.

[150]  C. Inglehearn,et al.  Polymorphisms in OPA1 are associated with normal tension glaucoma. , 2003, Molecular vision.

[151]  J L Haines,et al.  Genome-wide scan for adult onset primary open angle glaucoma. , 2000, Human molecular genetics.

[152]  P. Lichter,et al.  Loss-of-function mutations in the LIM-homeodomain gene, LMX1B, in nail-patella syndrome. , 1998, Human molecular genetics.

[153]  Maria L. Wei,et al.  Characterization of melanosomes in murine Hermansky-Pudlak syndrome: mechanisms of hypopigmentation. , 2004, The Journal of investigative dermatology.

[154]  Richard S. Smith,et al.  The mouse anterior chamber angle and trabecular meshwork develop without cell death , 2001, BMC Developmental Biology.

[155]  R. Ritch,et al.  Adult-Onset Primary Open-Angle Glaucoma Caused by Mutations in Optineurin , 2002, Science.

[156]  Y. Takeshima,et al.  Novel nonsense mutation in the Na+/HCO3- cotransporter gene (SLC4A4) in a patient with permanent isolated proximal renal tubular acidosis and bilateral glaucoma. , 2001, Journal of the American Society of Nephrology : JASN.

[157]  B. Yue,et al.  The extracellular matrix and its modulation in the trabecular meshwork. , 1996, Survey of ophthalmology.

[158]  K. Brown,et al.  Microarray analysis of changes in mRNA levels in the rat retina after experimental elevation of intraocular pressure. , 2004, Investigative ophthalmology & visual science.

[159]  G. Kitsos,et al.  Refining the primary open‐angle glaucoma GLC1C region on chromosome 3 by haplotype analysis , 2003, Clinical genetics.

[160]  J. Wiggs,et al.  DNA sequence variants in the tyrosinase-related protein 1 (TYRP1) gene are not associated with human pigmentary glaucoma. , 2002, Molecular vision.

[161]  K. Schmidt,et al.  [Neurodegeneration and neuroprotection]. , 2004, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[162]  C. Wadelius,et al.  Analysis of the Glutathione S-transferase M1 gene using pyrosequencing and multiplex PCR--no evidence of association to glaucoma. , 2003, Experimental eye research.

[163]  A. Neufeld Pharmacologic neuroprotection with an inhibitor of nitric oxide synthase for the treatment of glaucoma , 2004, Brain Research Bulletin.

[164]  A E Maumenee,et al.  Biostatistical analysis of the collaborative glaucoma study. I. Summary report of the risk factors for glaucomatous visual-field defects. , 1980, Archives of ophthalmology.

[165]  J. Haines,et al.  A second locus for Rieger syndrome maps to chromosome 13q14. , 1996, American journal of human genetics.

[166]  P. Chinnery,et al.  Primary open angle glaucoma is associated with a specific p53 gene haplotype , 2004, Journal of Medical Genetics.

[167]  J. Lupski,et al.  Mutations in CYP1B1, the gene for cytochrome P4501B1, are the predominant cause of primary congenital glaucoma in Saudi Arabia. , 1998, American journal of human genetics.

[168]  Janey L. Wiggs,et al.  Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice , 2002, Nature Genetics.

[169]  S. John,et al.  Anterior segment dysgenesis and the developmental glaucomas are complex traits. , 2002, Human molecular genetics.

[170]  G. Imokawa,et al.  DHICA oxidase activity of TRP1 and interactions with other melanogenic enzymes. , 1994, Pigment cell research.

[171]  Takeshi Ishibashi,et al.  Cdna Microarray Analysis of Gene Expression Changes Induced by Dexamethasone in Cultured Human Trabecular Meshwork Cells Materials and Methods Cell Culture , 2022 .

[172]  J. Pawelek,et al.  5,6-Dihydroxyindole is a melanin precursor showing potent cytotoxicity , 1978, Nature.

[173]  V. Ferák,et al.  Identification of a single ancestral CYP1B1 mutation in Slovak Gypsies (Roms) affected with primary congenital glaucoma , 1999, Journal of medical genetics.

[174]  W. Hodge,et al.  Familial occurrence of pigment dispersion syndrome. , 2001, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[175]  F. Tsai,et al.  Insulin‐like growth factor‐II gene polymorphism is associated with primary open angle glaucoma , 2003, Journal of clinical laboratory analysis.

[176]  A. Sommer,et al.  Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. , 1991, Archives of ophthalmology.

[177]  R. Stone,et al.  A1‐, A2A‐ and A3‐subtype adenosine receptors modulate intraocular pressure in the mouse , 2001, British journal of pharmacology.

[178]  I. Järvelä,et al.  Exclusion of 14 candidate loci for primary open angle glaucoma in Finnish families. , 2004, Molecular vision.

[179]  Michal Schwartz,et al.  Neurodegeneration and neuroprotection in glaucoma: development of a therapeutic neuroprotective vaccine: the Friedenwald lecture. , 2003, Investigative ophthalmology & visual science.

[180]  D. Zack,et al.  Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. , 1995, Investigative ophthalmology & visual science.

[181]  M. Civan,et al.  Adenosine stimulates Cl- channels of nonpigmented ciliary epithelial cells. , 1997, American journal of physiology. Cell physiology.

[182]  E. E. Hartmann,et al.  The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. , 2002, Archives of ophthalmology.

[183]  R. Farkas,et al.  Gene expression profiling of purified rat retinal ganglion cells. , 2004, Investigative ophthalmology & visual science.

[184]  M. Wax,et al.  Neurobiology of glaucomatous optic neuropathy , 2002, Molecular Neurobiology.

[185]  A. Iwase,et al.  The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. , 2004, Ophthalmology.

[186]  V. Sheffield,et al.  Analysis of myocilin mutations in 1703 glaucoma patients from five different populations. , 1999, Human molecular genetics.

[187]  W. Alward,et al.  Axenfeld-Rieger syndrome in the age of molecular genetics. , 2000, American journal of ophthalmology.

[188]  D. Goldblum,et al.  Prospects for relevant glaucoma models with retinal ganglion cell damage in the rodent eye , 2002, Vision Research.

[189]  M. Araie,et al.  Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis. , 2001, The Journal of clinical investigation.

[190]  R. Aebersold,et al.  Proteomics: the first decade and beyond , 2003, Nature Genetics.

[191]  J. Alvarado,et al.  Outflow obstruction in pigmentary and primary open angle glaucoma. , 1992, Archives of ophthalmology.

[192]  Richard S. Smith,et al.  Modification of Ocular Defects in Mouse Developmental Glaucoma Models by Tyrosinase , 2003, Science.

[193]  T. Filippopoulos,et al.  Quantitative analysis of retinal ganglion cell (RGC) loss in aging DBA/2NNia glaucomatous mice: comparison with RGC loss in aging C57/BL6 mice. , 2003, Investigative ophthalmology & visual science.

[194]  W. Shannon,et al.  DNA microarray analysis of gene expression in human optic nerve head astrocytes in response to hydrostatic pressure. , 2004, Physiological genomics.

[195]  J. Morissette,et al.  Intracellular sequestration of hetero-oligomers formed by wild-type and glaucoma-causing myocilin mutants. , 2004, Investigative ophthalmology & visual science.