Nanocrystalline Bainitic Steels for Industrial Applications

[1]  T. Sourmail,et al.  On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels , 2015 .

[2]  T. Sourmail,et al.  Industrialised nanocrystalline bainitic steels. Design approach , 2014 .

[3]  T. Sourmail,et al.  Composition design of nanocrystalline bainitic steels by diffusionless solid reaction , 2014, Metals and Materials International.

[4]  B. Prakash,et al.  Fatigue of 0.55C-1.72Si Steel with Tempered Martensitic and Carbide-Free Bainitic Microstructures , 2014, Acta Metallurgica Sinica (English Letters).

[5]  Wei Li,et al.  Effect of Retained Austenite on the Fracture Toughness of Quenching and Partitioning (Q&P)-Treated Sheet Steels , 2014, Metallurgical and Materials Transactions A.

[6]  C. Capdevila,et al.  An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels , 2013 .

[7]  F. Caballero,et al.  Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications , 2013 .

[8]  T. Sourmail,et al.  Wear of nano-structured carbide-free bainitic steels under dry rolling–sliding conditions , 2013 .

[9]  S. Kazemi,et al.  Developing very hard nanostructured bainitic steel , 2013 .

[10]  T. Sourmail,et al.  Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon , 2012 .

[11]  B. Avishan,et al.  Toughness variations in nanostructured bainitic steels , 2012 .

[12]  Jingkai Yang,et al.  High-cycle bending fatigue behaviour of nanostructured bainitic steel , 2012 .

[13]  B. Prakash,et al.  Tribological behaviour of carbide-free bainitic steel under dry rolling/sliding conditions , 2011 .

[14]  F. Hu,et al.  Nanostructured high-carbon dual-phase steels , 2011 .

[15]  P. Hodgson,et al.  Nanoscale microstructural characterization of a nanobainitic steel , 2011 .

[16]  T. Wang,et al.  Design of a new nanostructured, high-Si bainitic steel with lower cost production , 2011 .

[17]  H. Bhadeshia,et al.  Fatigue of extremely fine bainite , 2011 .

[18]  G. Frommeyer,et al.  Effect of testing temperature and strain rate on the transformation behaviour of retained austenite in low-alloyed multiphase steel , 2009 .

[19]  Yoshitaka Adachi,et al.  Crystallographic analysis of nanobainitic steels , 2009 .

[20]  H. Bhadeshia,et al.  Influence of silicon on cementite precipitation in steels , 2008 .

[21]  Jonas Lundmark,et al.  Wear Characteristic of Surface Hardened Ausferritic Si-Steel , 2007 .

[22]  C. Capdevila,et al.  Design of Advanced Bainitic Steels by Optimisation of TTT Diagrams and T0 Curves , 2006 .

[23]  H. Bhadeshia,et al.  TRIP-assisted steels: cracking of high-carbon martensite , 2006 .

[24]  Francisca García Caballero,et al.  Ultra-high-strength Bainitic Steels , 2005 .

[25]  L. Chang The rolling/sliding wear performance of high silicon carbide-free bainitic steels , 2005 .

[26]  Pascal Jacques,et al.  Transformation-induced plasticity for high strength formable steels , 2004 .

[27]  H. Bhadeshia,et al.  Acceleration of Low-temperature Bainite , 2003 .

[28]  H. Bhadeshia,et al.  Development of Hard Bainite , 2003 .

[29]  T. Sakai,et al.  Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue , 2002 .

[30]  Kazuaki Shiozawa,et al.  Very high‐cycle fatigue behaviour of shot‐peened high‐carbon–chromium bearing steel , 2002 .

[31]  Yukitaka Murakami,et al.  Mechanism of fatigue failure in ultralong life regime , 2002 .

[32]  Francisca García Caballero,et al.  Very strong low temperature bainite , 2002 .

[33]  Keisuke Tanaka,et al.  Microstructural effects on crack closure and propagation thresholds of small fatigue cracks , 2001 .

[34]  P. Brown,et al.  Design of novel high strength bainitic steels: Part 2 , 2001 .

[35]  Yukitaka Murakami,et al.  On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part 1: influence of hydrogen trapped by inclusions , 2000 .

[36]  Y. Murakami,et al.  On the mechanism of fatigue failure in the superlong life regime (N > 107 cycles). Part II: a fractographic investigation , 2000 .

[37]  Tatsuo Sakai,et al.  Experimental Reconfirmation of Characteristic S-N Property for High Carbon Chromium Bearing Steel in Wide Life Region in Rotating Bending. , 2000 .

[38]  H. Bhadeshia,et al.  Estimation of bainite plate-thickness in low-alloy steels , 1998 .

[39]  P. Clayton,et al.  Effect of microstructure on rolling/sliding wear of low carbon bainitic steels , 1997 .

[40]  Shao Hesheng,et al.  Fatigue crack growth behaviour of a Si–Mn steel with carbide-free lathy bainite , 1997 .

[41]  P. Clayton,et al.  Unlubricated sliding and rolling/sliding wear behavior of continuously cooled, low/medium carbon bainitic steels , 1996 .

[42]  H. Bhadeshia,et al.  Strength of mixtures of bainite and martensite , 1994 .

[43]  K. Sugimoto,et al.  Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel , 1992, Metallurgical and Materials Transactions A.

[44]  O. Matsumura,et al.  Effect of Retained Austenite on Formability of High Strength Sheet Steels , 1992 .

[45]  J. Christian Simple geometry and crystallography applied to ferrous bainites , 1990 .

[46]  D. Edmonds,et al.  Fracture toughness of two experimental high-strength bainitic low-alloy steels containing silicon , 1987 .

[47]  H. K. D. H. Bhadeshia,et al.  Bainite in silicon steels: New composition–property approach Part 1 , 1983 .

[48]  B. Sandvik The Bainite reaction in Fe-Si-C Alloys: The primary stage , 1982 .

[49]  H. Nevalainen,et al.  Structu re-property relationships in commercial low-alloy bainitic-austenitic steel with high strength, ductility, and toughness , 1981 .

[50]  H. K. D. H. Bhadeshia,et al.  The mechanism of bainite formation in steels , 1980 .

[51]  Gregory B Olson,et al.  Kinetics of strain-induced martensitic nucleation , 1975 .

[52]  G. B. Olson,et al.  A MECHANISM FOR THE STRAIN-INDUCED NUCLEATION OF MARTENSITIC TRANSFORMATIONS* , 1972 .

[53]  G. Langford,et al.  Calculation of cell-size strengthening of wire-drawn iron , 1970 .