A new computational growth model for sea urchin skeletons.

A new computational model has been developed to simulate growth of regular sea urchin skeletons. The model incorporates the processes of plate addition and individual plate growth into a composite model of whole-body (somatic) growth. A simple developmental model based on hypothetical morphogens underlies the assumptions used to define the simulated growth processes. The data model is based on a Delaunay triangulation of plate growth center points, using the dual Voronoi polygons to define plate topologies. A spherical frame of reference is used for growth calculations, with affine deformation of the sphere (based on a Young-Laplace membrane model) to result in an urchin-like three-dimensional form. The model verifies that the patterns of coronal plates in general meet the criteria of Voronoi polygonalization, that a morphogen/threshold inhibition model for plate addition results in the alternating plate addition pattern characteristic of sea urchins, and that application of the Bertalanffy growth model to individual plates results in simulated somatic growth that approximates that seen in living urchins. The model suggests avenues of research that could explain some of the distinctions between modern sea urchins and the much more disparate groups of forms that characterized the Paleozoic Era.

[1]  Charles S. Peskin,et al.  On the construction of the Voronoi mesh on a sphere , 1985 .

[2]  Gregory M. Nielson,et al.  Visualizing functions over a sphere , 1990, IEEE Computer Graphics and Applications.

[3]  D. Raup Theoretical morphology of echinoid growth , 1968, Journal of Paleontology.

[4]  Shinjiro Kobayashi,et al.  Calcification in sea urchins , 2005, Calcified Tissue Research.

[5]  A. Seilacher,et al.  Constructional morphology of sand dollars , 1979, Paleobiology.

[6]  L. Urbaniak,et al.  Does calcein affect estimates of growth rates in sea urchins , 2004 .

[7]  E. Davidson,et al.  Set-aside cells in maximal indirect development: evolutionary and developmental significance. , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[8]  K. Märkel Struktur und Wachstum des Coronarskeletes vonArbacia lixula Linné (Echinodermata, Echinoidea) , 2004, Zoomorphologie.

[9]  O. Ellers A mechanical model of growth in regular sea urchins: predictions of shape and a developmental morphospace , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[10]  T. Ebert Longevity, life history, and relative body wall size in sea urchins , 1982 .

[11]  Donald W. Rogers,et al.  Modeling red sea urchin (Strongylocentrotus franciscanus) growth using six growth functions , 2003 .

[12]  G. Wray,et al.  Arrays in rays: terminal addition in echinoderms and its correlation with gene expression , 2005, Evolution & development.

[13]  G. Duineveld,et al.  Differences in growth rates of the sea urchin Echinocardium cordatum as estimated by the parameter w of the von Bertalanffy equation applied to skeletal rings , 1984 .

[14]  M. Thorndyke,et al.  Regeneration neurohormones and growth factors in echinoderms , 2001 .

[15]  David Salomon,et al.  Computer Graphics and Geometric Modeling , 1999, Springer New York.

[16]  M. Telford Domes, arches and urchins: The skeletal architecture of echinoids (Echinodermata) , 1985, Zoomorphology.

[17]  Ø. Hjelle,et al.  Triangulations and Applications (Mathematics and Visualization) , 2006 .

[18]  K. Märkel Experimental morphology of coronar growth in regular echinoids , 1981, Zoomorphology.

[19]  O. Ellers,et al.  Structural Strengthening of Urchin Skeletons by Collagenous Sutural Ligaments. , 1998, The Biological bulletin.

[20]  R. T. Jackson Phylogeny of the Echini, with a Revision of Palaeozoic Species , 2010 .

[21]  D'arcy W. Thompson On growth and form i , 1943 .

[22]  edited by Lidia Scalera-Liaci Calogero Canicatti Echinoderm Research 1991 , 1992 .

[23]  William M. Tepfenhart,et al.  UML and C++: A Practical Guide to Object-Oriented Development , 1997 .

[24]  J. Stone,et al.  Descartes, Plateau, And Sea Urchins , 2008 .

[25]  I. Gordon The Development of the Calcareous Test of Echinus miliaris , 1926 .

[26]  Leen Ammeraal STL for C++ programmers , 1997 .

[27]  B. David,et al.  Phylogeny and origin of Jurassic irregular echinoids (Echinodermata: Echinoidea) , 2006, Geological Magazine.

[28]  T. Ebert Growth and Mortality of Post-larval Echinoids , 1975 .

[29]  3-D form and Force Language: Proposal for a Structural Basis , 1996 .

[30]  H. Leddy,et al.  Sutural loosening and skeletal flexibility during growth: determination of drop-like shapes in sea urchins , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  I. Wilkie,et al.  Autotomy as a prelude to regeneration in echinoderms , 2001, Microscopy research and technique.

[32]  L. Hyman,et al.  The invertebrates: Echinodermata, the coelomate bilateria , 1955 .

[33]  P. Mladenov,et al.  Modelling somatic growth in the sea urchin Evechinus chloroticus (Echinoidea: Echinometridae) , 2000 .

[34]  Ture Wester,et al.  Nature Teaching Structures , 2002 .

[35]  W. Nachtigall,et al.  Functional morphology of regular echinoid tests (Echinodermata, Echinoida): a finite element study , 1996, Zoomorphology.

[36]  J. Erez,et al.  Skeletal calcification patterns in the sea urchin Tripneustes gratilla elatensis (Echinoidea: Regularia) , 1987 .

[37]  K. Märkel Struktur und Wachstum des Coronarskeletes vonArbacia lixula Linné (Echinodermata, Echinoidea) , 1976, Zoomorphologie.

[38]  B. David,et al.  Echinoderm skeletal homologies: Classical morphology meets modern phylogenetics , 1994 .

[39]  Michael A. Earle Vector Solutions for Great Circle Navigation , 2005 .

[40]  K. Märkel Wachstum des Coronarskeletes vonParacentrotus lividus Lmk. (Echinodermata, Echinoidea) , 1975, Zoomorphologie.