Influence of Microphase Morphology and Long-Range Ordering on Foaming Behavior of PE-b-PEO Diblock Copolymers

In this study, spherical, lamellar, and aligned lamellar types of polyethylene-b-poly(ethylene oxide) (PE-b-PEO) diblock copolymers were prepared and comparatively foamed with CO2 to understand the influence of microphase morphology and long-range ordering on foaming behavior. The experimentally measured melting point, CO2 solubility, and interfacial tension in the presence of CO2 indicated the potential of CO2-philic PEO block acting as bubble nuclei. Scanning electron microscopy results revealed that lamellar PE-b-PEO produced open cells all the way, whereas spherical PE-b-PEO created closed cells at low temperature and mesh-like openings at high temperature. Continuous PEO microdomains directly provide numerous potential opening channels and therefore induce the bursting of cells. The drastic biaxial stretching of cell walls at high temperature turns the embedded discrete PEO spheres into those channels responsible for the distinct mesh-like perforations. As for the flow aligned lamellar PE-b-PEO, subm...

[1]  S. Sasaki,et al.  Relationship between morphological change and crystalline phase transitions of polyethylene-poly(ethylene oxide) diblock copolymers. 3. Dependence of morphological transition phenomena on the PE/PEO segmental lengths and its possible origins. , 2009, The journal of physical chemistry. B.

[2]  D. Tomasko,et al.  Effect of Carbon Dioxide on the Interfacial Tension of Polymer Melts , 2004 .

[3]  Chul B. Park,et al.  Extrusion of microcellular open‐cell LDPE‐based sheet foams , 2006 .

[4]  W. Yuan,et al.  Controlling sandwich‐structure of PET microcellular foams using coupling of CO2 diffusion and induced crystallization , 2012 .

[5]  L. Li,et al.  Tunable Nanocellular Polymeric Monoliths Using Fluorinated Block Copolymer Templates and Supercritical Carbon Dioxide , 2004 .

[6]  Dimitris I. Collais,et al.  Tesile toughness of microcellular foams of polystyrene, styrene‐acrylonitrile copolymer, and polycarbonate, and the effect of dissolved gas on the tensile toughness of the same polymer matrices and microcellular foams , 1995 .

[7]  Chul B. Park,et al.  Numerical Investigation of Nucleating-Agent-Enhanced Heterogeneous Nucleation , 2010 .

[8]  É. Cloutet,et al.  Investigation of the nanocellular foaming of polystyrene in supercritical CO2 by adding a CO2‐philic perfluorinated block copolymer , 2012 .

[9]  J. Tallon,et al.  Micro and nano cellular amorphous polymers (PMMA, PS) in supercritical CO2 assisted by nanostructured CO2-philic block copolymers - One step foaming process , 2011 .

[10]  Giulio C. Sarti,et al.  Nonequilibrium Lattice Fluids: A Predictive Model for the Solubility in Glassy Polymers , 1996 .

[11]  Chul B. Park,et al.  Effect of the introduction of polydimethylsiloxane on the foaming behavior of block‐copolymerized polypropylene , 2012 .

[12]  G. Hu,et al.  Supercritical Carbon Dioxide Induced Foaming of Highly Oriented Isotactic Polypropylene , 2011 .

[13]  H. Schmalz,et al.  Development of Micro- and Nanocellular Polymers , 2007 .

[14]  M. Ohshima,et al.  Density measurement of polymer/CO2 single-phase solution at high temperature and pressure using a gravimetric method , 2007 .

[15]  D. Tomasko,et al.  Polymer–Clay Nanocomposite Foams Prepared Using Carbon Dioxide , 2003 .

[16]  M. Rodríguez-Pérez,et al.  Low-Density Nanocellular Foams Produced by High-Pressure Carbon Dioxide , 2011 .

[17]  Chul B. Park,et al.  Surface Tension Measurement of Polystyrene Melts in Supercritical Carbon Dioxide , 2006 .

[18]  Hideaki Yokoyama,et al.  Ordered and foam structures of semifluorinated block copolymers in supercritical carbon dioxide , 2012 .

[19]  W. Yuan,et al.  Controlling crystal phase transition from form II to I in isotactic poly-1-butene using CO2 , 2012 .

[20]  A. Knoll,et al.  Synthesis and characterization of ABC triblock copolymers with two different crystalline end blocks: Influence of confinement on crystallization behavior and morphology , 2002 .

[21]  W. Yuan,et al.  Foaming of linear isotactic polypropylene based on its non-isothermal crystallization behaviors under compressed CO2 , 2011 .

[22]  S. Ray,et al.  Well-controlled biodegradable nanocomposite foams: From microcellular to nanocellular , 2003 .

[23]  G. Hu,et al.  A two-step depressurization batch process for the formation of bi-modal cell structure polystyrene foams using scCO2 , 2011 .

[24]  B. Hsiao,et al.  Self-assembly and crystallization behavior of a double-crystalline polyethylene-block-poly(ethylene oxide) diblock copolymer , 2004 .

[25]  D. Baird,et al.  Impact behavior of microcellular foams of polystyrene and styrene‐acrylonitrile copolymer, and single‐edge‐notched tensile toughness of microcellular foams of polystyrene, styrene‐acrylonitrile copolymer, and palycarbonate , 1995 .

[26]  M. Ohshima,et al.  Effect of interfacial tension on the cell structure of poly(methyl methacrylate)/bisphenol A polycarbonate blends foamed with CO2 , 2014 .

[27]  Li Bing,et al.  Batch Foam Processing of Polypropylene/Polydimethylsiloxane Blends , 2010 .

[28]  Zhuoyang Lian,et al.  Carbon dioxide-induced melting point depression of biodegradable semicrystalline polymers , 2006 .

[29]  K. Johnston,et al.  Effect of Surfactants on the Interfacial Tension and Emulsion Formation between Water and Carbon Dioxide , 1999 .

[30]  Song,et al.  Determination of Interfacial Tension from the Profile of a Pendant Drop Using Computer-Aided Image Processing , 1996, Journal of colloid and interface science.

[31]  I. Sanchez,et al.  Ordering in asymmetric block copolymer films by a compressible fluid. , 2007, Journal of Physical Chemistry B.

[32]  M. Ohshima,et al.  CO2‐Induced Mechanical Reinforcement of Polyolefin‐Based Nanocellular Foams , 2011 .

[33]  W. Yuan,et al.  Effects of Blend Morphology on the Foaming of Polypropylene/ Low-density Polyethylene Blends during a Batch Foaming Process , 2009 .

[34]  K. Ogino,et al.  Fabrication of porous film based on poly(2,6-dimetyl-1,4-phenylene ether) block copolymer by supercritical carbon dioxide treatment , 2011 .

[35]  C. Macosko,et al.  Block Copolymer Micelles for Nucleation of Microcellular Thermoplastic Foams , 2004 .

[36]  K. Sugiyama,et al.  Thermally robust nanocellular thin films of high-Tg semifluorinated block copolymers foamed with supercritical carbon dioxide , 2011 .

[37]  T. Hata,et al.  Thermodynamic Properties of Poly(ethylene glycol) and Poly(tetrahydrofuran). I. P—V—T Relations and Internal Pressure , 1973 .

[38]  U. A. Handge,et al.  Influence of rheology and morphology on foaming of PS-b-PMMA diblock copolymers and their composites with modified silica nanoparticles , 2013 .

[39]  H. Tadokoro,et al.  Structural studies on polyethers, [‐(CH2)m‐O‐]n. II. Molecular structure of polyethylene oxide , 1964 .

[40]  Xiangfang Peng,et al.  Processing and characterization of supercritical CO2 batch foamed poly(lactic acid)/poly(ethylene glycol) scaffold for tissue engineering application , 2013 .

[41]  S. Hahn An improved method for the diimide hydrogenation of butadiene and isoprene containing polymers , 1992 .

[42]  Jonathan S. Colton,et al.  The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations , 1987 .

[43]  J. Tallon,et al.  Block Copolymer-Assisted Microcellular Supercritical CO2 Foaming of Polymers and Blends , 2012 .

[44]  M. Ohshima,et al.  CO2 foaming of poly(ethylene glycol)/polystyrene blends: Relationship of the blend morphology, CO2 mass transfer, and cellular structure , 2005 .

[45]  H. Yokoyama,et al.  Nanocellular foaming of fluorine containing block copolymers in carbon dioxide: the role of glass transition in carbon dioxide , 2012 .

[46]  I. Sanchez,et al.  Effect of Surfactants on the Interfacial Tension between Supercritical Carbon Dioxide and Polyethylene Glycol , 1996 .

[47]  W. Yuan,et al.  Solubility and Diffusivity of Carbon Dioxide in Solid-State Isotactic Polypropylene by the Pressure−Decay Method , 2009 .

[48]  Ž. Knez,et al.  Phase equilibrium (solid-liquid-gas) in polyethyleneglycol-carbon dioxide systems , 1997 .

[49]  R. B. McClurg Design criteria for ideal foam nucleating agents , 2004 .

[50]  H. Baumgartl,et al.  Interfacial properties of high viscous liquids in a supercritical carbon dioxide atmosphere , 2002 .

[51]  N. Suh,et al.  The viscoelastic behavior of microcellular plastics with varying cell size , 1995 .

[52]  M. N. D. Ponte,et al.  High pressure phase equilibria for poly(ethylene glycol)s + CO2: experimental results and modelling , 1999 .