Complete convergence and Cesàro summation for i.i.d. random variables

SummaryVarious results generalizing summation methods for divergent series of real numbers to analogous results for independent, identically distributed random variables have appeared during the last two decades. The main result of this paper provides necessary and sufficient conditions for the complete convergence of the Cesàro means of i.i.d random variables.

[1]  J. Marcinkiewicz Sur les fonctions indépendantes , 1938 .

[2]  Summation of weakly dependent sequences by Cesàro methods , 1987 .

[3]  Tze Leung Lai,et al.  Limiting Behavior of Weighted Sums of Independent Random Variables , 1973 .

[4]  N. Bingham Tauberian Theorems for Summability Methods of Random‐Walk Type , 1984 .

[5]  P. Erdos Remark on my Paper "On a Theorem of Hsu and Robbins" , 1950 .

[6]  Y. Derriennic,et al.  Sur la convergence presque sure, au sens de Cesaro d'ordre α, 0 , 1988 .

[7]  G. Lorentz Borel and Banach properties of methods of summation , 1955 .

[8]  J. Hoffmann-jorgensen Sums of independent Banach space valued random variables , 1974 .

[9]  Allan Gut,et al.  Complete convergence for arrays , 1992 .

[10]  N. Bingham On Borel and Euler Summability , 1984 .

[11]  B. Heinkel An infinite-dimensional law of large numbers in Cesaro's sense , 1990 .

[12]  Riesz and Valiron means and fractional moments , 1986 .

[13]  M. Katz,et al.  The Probability in the Tail of a Distribution , 1963 .

[14]  On valiron and circle convergence , 1984 .

[15]  A. Gut The weak law of large numbers for arrays , 1992 .

[16]  N. Bingham,et al.  Summability methods and almost sure convergence , 1985 .

[17]  T. Lai Summability methods for independent identically distributed random variables , 1974 .

[18]  Paul Erdös,et al.  On a Theorem of Hsu and Robbins , 1949 .

[19]  F. Spitzer A Combinatorial Lemma and its Application to Probability Theory , 1956 .

[20]  A. Gut Marcinkiewicz Laws and Convergence Rates in the Law of Large Numbers for Random Variables with Multidimensional Indices , 1978 .

[21]  Y. S. Chow Some Convergence Theorems for Independent Random Variables , 1966 .

[22]  N. Bingham Summability Methods and Dependent Strong Laws , 1986 .

[23]  Michel Loève,et al.  Probability Theory I , 1977 .

[24]  H Robbins,et al.  Complete Convergence and the Law of Large Numbers. , 1947, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Tail probabilities for sums of independent Banach space valued random variables , 1975 .

[26]  W. Stout Almost sure convergence , 1974 .

[27]  Leonard E. Baum,et al.  Convergence rates in the law of large numbers , 1965 .

[28]  N. H. Bingham,et al.  Extensions of the strong law , 1986 .