On temporal stochastic modeling of precipitation, nesting models across scales

We analyze the performance of composite stochastic models of temporal precipitation which can satisfactorily reproduce precipitation properties across a wide range of temporal scales. The rationale is that a combination of stochastic precipitation models which are most appropriate for specific limited temporal scales leads to better overall performance across a wider range of scales than single models alone. We investigate different model combinations. For the coarse (daily) scale these are models based on Alternating renewal processes, Markov chains, and Poisson cluster models, which are then combined with a microcanonical Multiplicative Random Cascade model to disaggregate precipitation to finer (minute) scales. The composite models were tested on data at four sites in different climates. The results show that model combinations improve the performance in key statistics such as probability distributions of precipitation depth, autocorrelation structure, intermittency, reproduction of extremes, compared to single models. At the same time they remain reasonably parsimonious. No model combination was found to outperform the others at all sites and for all statistics, however we provide insight on the capabilities of specific model combinations. The results for the four different climates are similar, which suggests a degree of generality and wider applicability of the approach.

[1]  David R. Cox,et al.  A simple spatial-temporal model of rainfall , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Edward C. Waymire,et al.  Multifractal Dimensions and Scaling Exponents for Strongly Bounded Random Cascades , 1992 .

[3]  Murugesu Sivapalan,et al.  Modeling of rainfall time series and extremes using bounded random cascades and levy‐stable distributions , 2000 .

[4]  R. Rosso,et al.  Spatial downscaling of precipitation from GCMs for climate change projections using random cascades: A case study in Italy , 2011 .

[5]  Dennis P. Lettenmaier,et al.  A Markov Renewal Model for Rainfall Occurrences , 1987 .

[6]  Mikhail A. Semenov,et al.  A serial approach to local stochastic weather models , 1991 .

[7]  D. C. Curtis,et al.  A weather generator for hydrological, ecological, and agricultural applications , 2007 .

[8]  Paul S. P. Cowpertwait,et al.  Further developments of the neyman‐scott clustered point process for modeling rainfall , 1991 .

[9]  R. Molina Spatiotemporal downscaling of climate scenarios in regions of complex orography , 2013 .

[10]  C. T. Haan,et al.  A Markov Chain Model of daily rainfall , 1976 .

[11]  R. Rosso,et al.  A simple model of rain in time: An alternating renewal process of wet and dry states with a fractional (non-Gaussian) rain intensity , 2007 .

[12]  Witold F. Krajewski,et al.  Recent advances in rainfall modeling, estimation, and forecasting (95RG00338) , 1995 .

[13]  Demetris Koutsoyiannis,et al.  Two-dimensional Hurst–Kolmogorov process and its application to rainfall fields , 2011 .

[14]  Demetris Koutsoyiannis,et al.  Coupling stochastic models of different timescales , 2001 .

[15]  Nicola Rebora,et al.  A comparison of stochastic models for spatial rainfall downscaling , 2003 .

[16]  Jonas Olsson,et al.  Reproduction of temporal scaling by a rectangular pulses rainfall model , 2002 .

[17]  Dara Entekhabi,et al.  Probabilistic representation of the temporal rainfall process by a modified Neyman‐Scott Rectangular Pulses Model: Parameter estimation and validation , 1989 .

[18]  V. Isham,et al.  A point process model for rainfall: further developments , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  V. Ivanov,et al.  Simulation of future climate scenarios with a weather generator , 2011 .

[20]  P. Troch,et al.  Evaluation of cluster-based rectangular pulses point process models for rainfall , 1994 .

[21]  H. Wheater,et al.  Improvements to the modelling of British rainfall using a modified Random Parameter Bartlett-Lewis Rectangular Pulse Model , 1994 .

[22]  E. Chin,et al.  Modeling daily precipitation occurrence process with Markov Chain , 1977 .

[23]  R. Chandler,et al.  Analysis of rainfall variability using generalized linear models: A case study from the west of Ireland , 2002 .

[24]  Valerie Isham,et al.  Some models for rainfall based on stochastic point processes , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  Joshua R. Smith,et al.  Long‐term precipitation database, Walnut Gulch Experimental Watershed, Arizona, United States , 2008 .

[26]  Vito Iacobellis,et al.  Imperfect scaling of time and space–time rainfall , 2006 .

[28]  V. Gupta,et al.  MODELING SPACE-TIME RAINFALL AT THE MESOSCALE USING RANDOM CASCADES , 2004 .

[29]  R. Chandler,et al.  Spatial‐temporal rainfall simulation using generalized linear models , 2005 .

[30]  P. Guttorp,et al.  A non‐homogeneous hidden Markov model for precipitation occurrence , 1999 .

[31]  Geoffrey G. S. Pegram,et al.  A nested multisite daily rainfall stochastic generation model , 2009 .

[32]  Thomas M. Over,et al.  A space‐time theory of mesoscale rainfall using random cascades , 1996 .

[33]  P. Burlando,et al.  Variability in the scale properties of high‐resolution precipitation data in the Alpine climate of Switzerland , 2008 .

[34]  Daniele Veneziano,et al.  Multifractality and rainfall extremes: A review , 2006 .

[35]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[36]  M. Parlange,et al.  Generalizations of Chain-Dependent Processes: Application to Hourly Precipitation , 1995 .

[37]  Jonas Olsson,et al.  Cascade-based disaggregation of continuous rainfall time series : the influence of climate , 2001 .

[38]  F. Serinaldi Multifractality, imperfect scaling and hydrological properties of rainfall time series simulated by continuous universal multifractal and discrete random cascade models , 2010 .

[39]  V. Iacobellis,et al.  Multiscaling pulse representation of temporal rainfall , 2002 .

[40]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[41]  Peter Molnar,et al.  Temporal dependence structure in weights in a multiplicative cascade model for precipitation , 2012 .

[42]  Marco Marani,et al.  On the correlation structure of continuous and discrete point rainfall , 2003 .

[43]  H. Wheater,et al.  Modelling of British rainfall using a random parameter Bartlett-Lewis Rectangular Pulse Model , 1993 .

[44]  Renzo Rosso,et al.  Stochastic Models of Temporal Rainfall: Reproducibility, Estimation and Prediction of Extreme Events , 1993 .

[45]  Eric Gaume,et al.  Rainfall stochastic disaggregation models: Calibration and validation of a multiplicative cascade model , 2007 .

[46]  Richard W. Katz,et al.  Precipitation as a Chain-Dependent Process , 1977 .

[47]  T. A. Buishand,et al.  Some remarks on the use of daily rainfall models , 1978 .

[48]  A. Porporato,et al.  Revisiting rainfall clustering and intermittency across different climatic regimes , 2009 .

[49]  Peter Molnar,et al.  Preservation of rainfall properties in stochastic disaggregation by a simple random cascade model , 2005 .

[50]  Christian Onof,et al.  Rainfall modelling using Poisson-cluster processes: a review of developments , 2000 .

[51]  François G. Schmitt,et al.  Modeling of rainfall time series using two-state renewal processes and multifractals , 1998 .

[52]  C. W. Richardson Stochastic simulation of daily precipitation, temperature, and solar radiation , 1981 .

[53]  Paul S. P. Cowpertwait,et al.  A generalized point process model for rainfall , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[54]  Renzo Rosso,et al.  Comment on “Parameter estimation and sensitivity analysis for the modified Bartlett‐Lewis rectangular pulses model of rainfall” by S. Islam et al. , 1991 .

[55]  T. McMahon,et al.  Stochastic generation of annual, monthly and daily climate data: A review , 2001 .

[56]  Padhraic Smyth,et al.  Downscaling of Daily Rainfall Occurrence over Northeast Brazil Using a Hidden Markov Model , 2004, Journal of Climate.

[57]  Efi Foufoula-Georgiou,et al.  Assessing dependence among weights in a multiplicative cascade model of temporal rainfall , 1996 .

[58]  Klaus Fraedrich,et al.  Scaling regimes of composite rainfall time series , 1993 .

[59]  C. Schär,et al.  A PRECIPITATION CLIMATOLOGY OF THE ALPS FROM HIGH-RESOLUTION RAIN-GAUGE OBSERVATIONS , 1998 .

[60]  Vijay P. Singh,et al.  Simulation of the entire range of daily precipitation using a hybrid probability distribution , 2012 .

[61]  A. Pathirana,et al.  Multifractal modelling and simulation of rain fields exhibiting spatial heterogeneity , 2002 .

[62]  Christian Onof,et al.  Quantifying the impact of small scale unmeasured rainfall variability on urban runoff through multifractal downscaling: A case study , 2012 .

[63]  Nicola Rebora,et al.  RainFARM: Rainfall Downscaling by a Filtered Autoregressive Model , 2006 .

[64]  Succi,et al.  Extended self-similarity in turbulent flows. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[65]  A. Molini,et al.  Improving the accuracy of tipping-bucket rain records using disaggregation techniques , 2005 .

[66]  P. S. Eagleson,et al.  Mathematical models of rainstorm events in space and time , 1987 .

[67]  Daniele Veneziano,et al.  Multifractality of rainfall and scaling of intensity‐duration‐frequency curves , 2002 .

[68]  Garry R. Willgoose,et al.  A HYBRID MODEL FOR POINT RAINFALL MODELING , 1997 .

[69]  Marc Soutter,et al.  Toward a robust method for subdaily rainfall downscaling from daily data , 2011 .

[70]  Elena Volpi,et al.  Rainfall downscaling in time: theoretical and empirical comparison between multifractal and Hurst-Kolmogorov discrete random cascades , 2012 .

[71]  Daniele Veneziano,et al.  Marginal Distribution of Stationary Multifractal Measures and Their Haar Wavelet Coefficients , 2003 .

[72]  D. Woolhiser,et al.  Stochastic daily precipitation models: 1. A comparison of occurrence processes , 1982 .

[73]  Edward C. Waymire,et al.  A statistical analysis of mesoscale rainfall as a random cascade , 1993 .

[74]  Hayley J. Fowler,et al.  RainSim: A spatial-temporal stochastic rainfall modelling system , 2008, Environ. Model. Softw..

[75]  K. Paulson,et al.  Downscaling of rain gauge time series by multiplicative beta cascade , 2007 .

[76]  R. Deidda Rainfall downscaling in a space‐time multifractal framework , 2000 .

[77]  Merab Menabde,et al.  Multiscaling properties of rainfall and bounded random cascades , 1997 .

[78]  Paul S. P. Cowpertwait,et al.  A Poisson-cluster model of rainfall: some high-order moments and extreme values , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[79]  P. Burlando,et al.  Stochastic downscaling of precipitation to high‐resolution scenarios in orographically complex regions: 1. Model evaluation , 2014 .

[80]  B. Kang,et al.  A coupled stochastic space‐time intermittent random cascade model for rainfall downscaling , 2010 .

[81]  Jonas Olsson,et al.  Evaluation of a scaling cascade model for temporal rain- fall disaggregation , 1998 .

[82]  Lucien Le Cam,et al.  A Stochastic Description of Precipitation , 1961 .

[83]  J. Sansom,et al.  A Hidden Markov Model for Rainfall Using Breakpoint Data , 1998 .

[84]  D. Rupp,et al.  Time scale and intensity dependency in multiplicative cascades for temporal rainfall disaggregation , 2009 .

[85]  Chris Kilsby,et al.  A space‐time Neyman‐Scott model of rainfall: Empirical analysis of extremes , 2002 .

[86]  Niko E. C. Verhoest,et al.  Fitting bivariate copulas to the dependence structure between storm characteristics: A detailed analysis based on 105 year 10 min rainfall , 2010 .

[87]  Shaun Lovejoy,et al.  Hard and soft multifractal processes , 1992 .

[88]  P. E. O'Connell,et al.  Stochastic point process modelling of rainfall. I. Single-site fitting and validation , 1996 .

[89]  David A. Woolhiser,et al.  A Stochastic Model of n-Day Precipitation , 1975 .

[90]  Modelling the Space-Time Structure of Precipitation and its Impact on Basin Response , 2013 .

[91]  A. Langousis,et al.  SCALING AND FRACTALS IN HYDROLOGY , 2010 .

[92]  Demetris Koutsoyiannis,et al.  Entropy based derivation of probability distributions: A case study to daily rainfall , 2012 .