An empirical evaluation of translational and rotational invariance of descriptors and the classification of flower dataset

Object recognition and identification is used in the development of automatic systems in various domains. Latest research indicates that the performance of such systems depend on the efficiency in feature extraction; robust feature description and optimized classification or matching. This paper presents an empirical evaluation of efficiency and robustness of various gradient and binary descriptors with respect to translation, rotation and scaling etc. The performance of each descriptor is evaluated against the parameters such as size of feature set in terms of number of keypoints, matching accuracy and execution time. The detailed experiments were conducted on 17 category Oxford flower dataset to evaluate the robustness of descriptors against various rotations, scaling and noise using precision and recall values. Experimental results shows that the PCA-SIFT and SURF gives less matching rate but faster as compared to SIFT due to reduction in dimension in PCA-SIFT and use of integral images in SURF. ORB gives the best classification and outperforms the other descriptors with less memory requirement and is compact in size.

[1]  Jing Liu,et al.  Robust Structured Subspace Learning for Data Representation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Pascal Fua,et al.  LDAHash: Improved Matching with Smaller Descriptors , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Aly A. Farag,et al.  CSIFT: A SIFT Descriptor with Color Invariant Characteristics , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[5]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[6]  Luis Miguel Bergasa,et al.  Gauge-SURF descriptors , 2013, Image Vis. Comput..

[7]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[8]  James Miller,et al.  A comparative study of the performance of local feature-based pattern recognition algorithms , 2017, Pattern Analysis and Applications.

[9]  Andrew Zisserman,et al.  A Visual Vocabulary for Flower Classification , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[10]  Ravinder Kumar,et al.  An empirical evaluation of rotation invariance of LDP feature for fingerprint matching using neural networks , 2014, Int. J. Comput. Vis. Robotics.

[11]  Euripides G. M. Petrakis,et al.  A survey on industrial vision systems, applications, tools , 2003, Image Vis. Comput..

[12]  Jing Liu,et al.  Clustering-Guided Sparse Structural Learning for Unsupervised Feature Selection , 2014, IEEE Transactions on Knowledge and Data Engineering.

[13]  Rudy Lauwereins,et al.  SIFER: Scale-Invariant Feature Detector with Error Resilience , 2013, International Journal of Computer Vision.

[14]  Vincent Lepetit,et al.  DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Jose L Pons,et al.  A SURVEY OF COMPUTER VISION METHODS FOR LOCATING FRUIT ON TREES , 2000 .

[16]  Jinhui Tang,et al.  Unsupervised Feature Selection via Nonnegative Spectral Analysis and Redundancy Control , 2015, IEEE Transactions on Image Processing.

[17]  Vincent Lepetit,et al.  Boosting Binary Keypoint Descriptors , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[19]  Venkatachalam Chandrasekaran,et al.  COLOR CHILD: a novel color image local descriptor for texture classification and segmentation , 2015, Pattern Analysis and Applications.

[20]  Tobias Höllerer,et al.  Evaluation of Interest Point Detectors and Feature Descriptors for Visual Tracking , 2011, International Journal of Computer Vision.

[21]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[22]  Amit Prakash Singh,et al.  An empirical evaluation of local descriptors in object recognition , 2016, 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI).

[23]  Madasu Hanmandlu,et al.  Rotational invariant fingerprint matching using local directional descriptors , 2014, Int. J. Comput. Intell. Stud..

[24]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[26]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[27]  James T. Tippett,et al.  OPTICAL AND ELECTRO-OPTICAL INFORMATION PROCESSING, , 1965 .

[28]  Linda G. Shapiro,et al.  A SIFT descriptor with global context , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[29]  Masakazu Ejiri,et al.  Machine Vision in Early Days: Japan's Pioneering Contributions , 2007, ACCV.

[30]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[31]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[33]  Ravinder Kumar,et al.  A Robust Fingerprint Matching System Using Orientation Features , 2016, J. Inf. Process. Syst..

[34]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[35]  Sudeep Sarkar,et al.  Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Michael A Wirth,et al.  Performance Evaluation of Image Processing Algorithms in CADe , 2005, Technology in cancer research & treatment.

[37]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[38]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[39]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[40]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[41]  M. AnzarS.,et al.  Robust partial fingerprint recognition using wavelet SIFT descriptors , 2017, Pattern Analysis and Applications.