A QUASI-LIKELIHOOD APPROACH TO PARAMETER ESTIMATION FOR SIMULATABLE STATISTICAL MODELS

This paper introduces a parameter estimation method for a general class of statistical models. The method exclusively relies on the possibility to conduct simulations for the construction of interpolation-based metamodels of informative empirical characteristics and some subjectively chosen correlation structure of the underlying spatial random process. In the absence of likelihood functions for such statistical models, which is often the case in stochastic geometric modelling, the idea is to follow a quasi-likelihood (QL) approach to construct an optimal estimating function surrogate based on a set of interpolated summary statistics. Solving these estimating equations one can account for both the random errors due to simulations and the uncertainty about the meta-models. Thus, putting the QL approach to parameter estimation into a stochastic simulation setting the proposed method essentially consists of finding roots to a sequence of approximating quasiscore functions. As a simple demonstrating example, the proposed method is applied to a special parameter estimation problem of a planar Boolean model with discs. Here, the quasi-score function has a half-analytical, numerically tractable representation and allows for the comparison of the model parameter estimates found by the simulation-based method and obtained from solving the exact quasi-score equations.

[1]  L. Vogt Statistics For Spatial Data , 2016 .

[2]  I. Manke,et al.  Stochastic 3D modeling of non-woven materials with wet-proofing agent , 2013 .

[3]  D. Nott,et al.  REVIEW OF RECENT RESULTS ON EXCURSION SET MODELS , 2011 .

[4]  Dominique Jeulin,et al.  Random-walk-based stochastic modeling of three-dimensional fiber systems. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[6]  C. C. Heyde,et al.  Quasi-likelihood and Optimal Estimation , 2010 .

[7]  Joachim Ohser,et al.  3D Images of Materials Structures: Processing and Analysis , 2009 .

[8]  Claudia Redenbach,et al.  Microstructure models for cellular materials , 2009 .

[9]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[10]  W. Weil,et al.  Stochastic and Integral Geometry , 2008 .

[11]  C. Lautensack,et al.  Fitting three-dimensional Laguerre tessellations to foam structures , 2008 .

[12]  C. Varin On composite marginal likelihoods , 2008 .

[13]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[14]  The surface pair correlation function for stationary Boolean models , 2007, Advances in Applied Probability.

[15]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[16]  Scott A. Sisson,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2005 .

[17]  André Tscheschel Räumliche Statistik zur Charakterisierung gefüllter Elastomere , 2004 .

[18]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[19]  Exact Moments of Curvature Measures in the Boolean Model , 2001 .

[20]  Frank Mücklich,et al.  Statistical Analysis of Microstructures in Materials Science , 2000 .

[21]  David J. Nott,et al.  Pairwise likelihood methods for inference in image models , 1999 .

[22]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[23]  I. Molchanov Statistics of the Boolean Model for Practitioners and Mathematicians , 1997 .

[24]  C. Heyde,et al.  Quasi-likelihood and its application , 1997 .

[25]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[26]  K. Mardia,et al.  Kriging and splines with derivative information , 1996 .

[27]  Hans Wackernagel,et al.  Multivariate Geostatistics: An Introduction with Applications , 1996 .

[28]  Scott L. Zeger,et al.  [Inference Based on Estimating Functions in the Presence of Nuisance Parameters]: Rejoinder , 1995 .

[29]  L. Heinrich Asymptotic properties of minimum contrast estimators for parameters of boolean models , 1993 .

[30]  M. R. Osborne Fisher's Method of Scoring , 1992 .

[31]  G. Wahba Spline Models for Observational Data , 1990 .

[32]  Dale L. Zimmerman,et al.  Computationally efficient restricted maximum likelihood estimation of generalized covariance functions , 1989 .

[33]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[34]  G. Golub Matrix computations , 1983 .

[35]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[36]  G. Matheron The intrinsic random functions and their applications , 1973, Advances in Applied Probability.