Notes on cellular automata
暂无分享,去创建一个
Jean-Paul Allouche | Maurice Courbage | Jean-Paul Allouche | G. Skordev | J. Allouche | M. Courbage | G. Skordev
[1] J. Tyson,et al. A cellular automation model of excitable media including curvature and dispersion. , 1990, Science.
[2] N. Margolus,et al. Invertible cellular automata: a review , 1991 .
[3] Bruce M. Boghosian. Lattice gases and cellular automata , 1999, Future Gener. Comput. Syst..
[4] J. V. Tucker,et al. Can excitable media be considered as computational systems , 1991 .
[5] Y. Kayama,et al. Characteristic parameters and classification of one-dimensional cellular automata , 1993 .
[6] Alvy Ray Smith,et al. Simple Computation-Universal Cellular Spaces , 1971, JACM.
[7] Bruno Codenotti,et al. TRANSITIVE CELLULAR AUTOMATA ARE SENSITIVE , 1996 .
[8] Jean-Paul Allouche,et al. Oscillations spatio-temporelles engendrees par un automate cellulaire , 1984, Discret. Appl. Math..
[9] Hugues Chaté,et al. Dynamical phases in a cellular automaton model for epidemic propagation , 1997 .
[10] David M. Raup,et al. How Nature Works: The Science of Self-Organized Criticality , 1997 .
[11] S. M. Ulam,et al. RECURSIVELY DEFINED GEOMETRICAL OBJECTS AND PATTERNS OF GROWTH. , 1967 .
[12] Luciano Margara,et al. Expansivity, Permutivity, and Chaos for Cellular Automata , 1998, Theory of Computing Systems.
[13] Heinz-Otto Peitgen,et al. Global analysis of self-similarity features of cellular automata: selected examples , 1995 .
[14] Martin Gardner,et al. Wheels, life, and other mathematical amusements , 1983 .
[15] Stephen Wolfram,et al. Universality and complexity in cellular automata , 1983 .
[16] Heinz-Otto Peitgen,et al. Automaticity of Double Sequences Generated by One-Dimensional Linear Cellular Automata , 1997, Theor. Comput. Sci..
[17] Jonathan A. Snerratt. Periodic travelling waves in a family of deterministic cellular automata , 1996 .
[18] I. Korec. Pascal triangles modulo n and modular trellises , 1990 .
[19] Daniel H. Rothman,et al. Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics , 1997 .
[20] S. Hastings,et al. Spatial Patterns for Discrete Models of Diffusion in Excitable Media , 1978 .
[21] D. Anosov,et al. Dynamical Systems I: Ordinary Differential Equations and Smooth Dynamical Systems , 1994 .
[22] On the abundance of traveling waves in 1D infinite cellular automata , 1997 .
[23] Katsunobu Imai,et al. A computation-universal two-dimensional 8-state triangular reversible cellular automaton , 2000, Theor. Comput. Sci..
[25] Hirotomo Aso,et al. Dynamical Characteristics of Linear Cellular Automata , 1985, J. Comput. Syst. Sci..
[26] Eric Goles Ch.,et al. On the Limit Set of Some Universal Cellular Automata , 1993, Theor. Comput. Sci..
[27] M. Courbage,et al. Wavelengths distribution of chaotic travelling waves in some cellular automata , 2001 .
[28] M. Dubois-Violette,et al. A mathematical classification of the one-dimensional deterministic cellular automata , 1987 .
[29] C. Conley. Isolated Invariant Sets and the Morse Index , 1978 .
[30] Erica Jen,et al. Cylindrical cellular automata , 1988 .
[31] Martín Matamala,et al. Reaction-Diffusion Automata: Three States Implies Universality , 1997, Theory Comput. Syst..
[32] Robert Cori,et al. On the Sandpile Group of Dual Graphs , 2000, Eur. J. Comb..
[33] A. Schadschneider,et al. Statistical physics of vehicular traffic and some related systems , 2000, cond-mat/0007053.
[34] Michael F. Barnsley,et al. Fractals everywhere , 1988 .
[35] Stephen J. Willson,et al. Cellular automata can generate fractals , 1984, Discret. Appl. Math..
[36] Jarkko Kari,et al. Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..
[37] Robert M. May,et al. The spatial dynamics of host-parasitoid systems , 1992 .
[38] Eric Goles. Sand pile automata , 1992 .
[39] P. Santini,et al. Cellular automata in 1+1, 2+1 and 3+1 dimensions, constants of motion and coherent structures , 1994 .
[40] J. Ostlund,et al. Simulation of HIV-infection in artificial immune systems , 1990 .
[41] Jean-Pierre Boon,et al. Nonlinear lattice gas hydrodynamics , 1997 .
[42] Heinz-Otto Peitgen,et al. Self-Similar Functions Generated by Cellular Automata , 1998 .
[43] E. Berlekamp,et al. Winning Ways for Your Mathematical Plays , 1983 .
[44] Paul Manneville,et al. Cellular Automata and Modeling of Complex Physical Systems , 1989 .
[45] Robert L. Berger. The undecidability of the domino problem , 1966 .
[46] Marcos Kiwi,et al. Sand-Pile Dynamics in a One-Dimensional Bounded Lattice , 1993 .
[47] J. Hopfield,et al. Computing with neural circuits: a model. , 1986, Science.
[48] Jeffrey E. Steif,et al. Some rigorous results for the Greenberg-Hastings Model , 1991 .
[49] Satoshi Takahashi,et al. Self-Similarity of Linear Cellular Automata , 1992, J. Comput. Syst. Sci..
[50] Stephen Wolfram,et al. Cellular Automata And Complexity , 1994 .
[51] Gianpiero Cattaneo,et al. Ergodicity, transitivity, and regularity for linear cellular automata over Zm , 2000, Theor. Comput. Sci..
[52] J. Stillwell. Classical topology and combinatorial group theory , 1980 .
[53] John J. Tyson,et al. Third Generation Cellular Automation for Modeling Excitable Media , 1992, PPSC.
[54] Kari Eloranta,et al. Cellular automata for contour dynamics , 1995 .
[55] J. Milnor. On the concept of attractor , 1985 .
[56] Dietmar Saupe,et al. Chaos and fractals - new frontiers of science , 1992 .
[57] Paul Manneville,et al. Collective Behaviors in Spatially Extended Systems with Local Interactions and Synchronous Updating , 1992 .
[58] P. Kurka. Languages, equicontinuity and attractors in cellular automata , 1997, Ergodic Theory and Dynamical Systems.
[59] K. Steiglitz,et al. Soliton-like behavior in automata , 1986 .
[60] Shinji Takesue,et al. Boltzmann-type equations for elementary reversible cellular automata , 1997 .
[61] Curtis Greene,et al. A Combinatorial Problem Arising in the Study of Reaction-Diffusion Equations , 1980, SIAM J. Matrix Anal. Appl..
[62] Mike Hurley,et al. Attractors in restricted cellular automata , 1992 .
[63] M. Shirvani,et al. On ergodic one-dimensional cellular automata , 1991 .
[64] Petr Kurka,et al. Topological and measure-theoretic properties of one-dimensional cellular automata , 1997 .
[65] Frisch,et al. Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .
[66] John W. Milnor,et al. On the Entropy Geometry of Cellular Automata , 1988, Complex Syst..
[67] J.-P. Allouche,et al. Linear Cellular Automata, Finite Automata and Pascal's Triangle , 1996, Discret. Appl. Math..
[68] Jeffrey Shallit,et al. The Ubiquitous Prouhet-Thue-Morse Sequence , 1998, SETA.
[69] Howard Gutowitz. Cellular automata: theory and experiment : proceedings of a workshop , 1990 .
[70] Janko Gravner,et al. Metastability in the Greenberg-Hastings Model , 1993, patt-sol/9303005.
[71] B. Schönfisch. Propagation of fronts in cellular automata , 1995 .
[72] Klaus Sutner,et al. A Note on Culik-Yu Classes , 1989, Complex Syst..
[73] Erica Jen,et al. Exact solvability and quasiperiodicity of one-dimensional cellular automata , 1991 .
[74] M. Creutz. Deterministic Ising dynamics , 1986 .
[75] A. Odlyzko,et al. Algebraic properties of cellular automata , 1984 .
[76] Maurice Margenstern,et al. SAND PILE AS A UNIVERSAL COMPUTER , 1996 .
[77] Ivan Rapaport,et al. Global fixed point attractors of circular cellular automata and periodic tilings of the plane: Undecidability results , 1999, Discret. Math..
[78] D. Turcotte,et al. Self-organized criticality , 1999 .
[79] Jaime Ramos,et al. Alternate Realities: Mathematical Models of Nature and Man , 1990 .
[80] Giancarlo Mauri,et al. On the Dynamical Behavior of Chaotic Cellular Automata , 1999, Theor. Comput. Sci..
[81] Tommaso Toffoli,et al. Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.
[82] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[83] Anna T. Lawniczak,et al. Lattice gas automata for reactive systems , 1995, comp-gas/9512001.
[84] François Blanchard,et al. Dynamical properties of expansive one-sided cellular automata , 1997 .
[85] M. Courbage,et al. Traveling waves and chaotic properties in cellular automata. , 1999, Chaos.
[86] Erica Jen,et al. Linear cellular automata and recurring sequences in finite fields , 1988 .
[87] Max H. Garzon,et al. Models of massive parallelism: analysis of cellular automata and neural networks , 1995 .
[88] L. Watson,et al. Diffusion and wave propagation in cellular automaton models of excitable media , 1992 .
[89] Janko Gravner,et al. One-dimensional Deterministic Greenberg-Hastings Models , 1995, Complex Syst..
[90] J. Gravner. Percolation Times in Two-Dimensional Models For Excitable Media , 1996 .
[91] Philippe Aigrain,et al. Polyomino Tilings, Cellular Automata and Codicity , 1995, Theor. Comput. Sci..
[92] Pierre Lallemand,et al. Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..
[93] Pierre Tisseur,et al. Some properties of cellular automata with equicontinuity points , 2000 .
[94] J J Hopfield,et al. Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.
[95] R. L. Dobrushin,et al. Stochastic cellular systems : ergodicity, memory, morphogenesis , 1990 .
[96] M. Shereshevsky. Lyapunov exponents for one-dimensional cellular automata , 1992 .
[97] Maurice Courbage,et al. On the approach to statistical equilibrium in an infinite‐particle lattice dynamic model , 1989 .
[98] Rune Kleveland,et al. Mixing properties of one-dimensional cellular automata , 1997 .
[99] B. Hess,et al. Isotropic cellular automaton for modelling excitable media , 1990, Nature.
[100] Michael P. Hassell,et al. Spatial structure and chaos in insect population dynamics , 1991, Nature.
[101] Y. Pomeau,et al. Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions , 1976 .
[102] Nobuyasu Osato,et al. Linear Cellular Automata over Z_m , 1983, J. Comput. Syst. Sci..
[103] O. Parodi,et al. Simulating the Ising Model on a Cellular Automaton , 1989 .
[104] C. Dytham. The effect of habitat destruction pattern on species persistence : a cellular model , 1995 .
[105] Daniel H. Rothman,et al. Immiscible cellular-automaton fluids , 1988 .
[106] M. Shereshevsky,et al. Expansiveness, entropy and polynomial growth for groups acting on subshifts by automorphisms , 1993 .
[107] J.-P. Allouche,et al. Automata and automatic sequences , 2022, ArXiv.
[108] Bruno Durand. The Surjectivity Problem for 2D Cellular Automata , 1994, J. Comput. Syst. Sci..
[109] Arthur W. Burks,et al. Essays on cellular automata , 1970 .
[110] A. Fokas,et al. Soliton cellular automata , 1990 .