Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography

[1]  Sergei V. Kalinin,et al.  Graphene engineering by neon ion beams , 2016, Nanotechnology.

[2]  Stephen Jesse,et al.  Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy , 2016, Nanotechnology.

[3]  Stephen Jesse,et al.  Full information acquisition in piezoresponse force microscopy , 2015 .

[4]  Saul Perlmutter,et al.  Blind analysis: Hide results to seek the truth , 2015, Nature.

[5]  Sergei V. Kalinin,et al.  Big-deep-smart data in imaging for guiding materials design. , 2015, Nature materials.

[6]  Sergei V Kalinin,et al.  Constraining Data Mining with Physical Models: Voltage- and Oxygen Pressure-Dependent Transport in Multiferroic Nanostructures. , 2015, Nano letters.

[7]  Stephen Jesse,et al.  Identification of phases, symmetries and defects through local crystallography , 2015, Nature Communications.

[8]  Sergei V. Kalinin,et al.  Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets , 2015, Advanced Structural and Chemical Imaging.

[9]  Lewys Jones,et al.  Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: experimental demonstration at atomic resolution. , 2015, Ultramicroscopy.

[10]  Stephen Jesse,et al.  Complete information acquisition in dynamic force microscopy , 2015, Nature Communications.

[11]  Stephen Jesse,et al.  Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity , 2015 .

[12]  Josef Zweck,et al.  Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction , 2014, Nature Communications.

[13]  Brian C. Sales,et al.  Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis , 2014 .

[14]  Sergei V. Kalinin,et al.  Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFeO3/LaxSr1-xMnO3 interface. , 2014, Nature materials.

[15]  Sergei V. Kalinin,et al.  Big-data reflection high energy electron diffraction analysis for understanding epitaxial film growth processes. , 2014, ACS nano.

[16]  Stephen Jesse,et al.  Mapping internal structure of coal by confocal micro-Raman spectroscopy and scanning microwave microscopy , 2014 .

[17]  Benjamin Berkels,et al.  Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts , 2014, Nature Communications.

[18]  Stephen Jesse,et al.  Deep data analysis of conductive phenomena on complex oxide interfaces: physics from data mining. , 2014, ACS nano.

[19]  J. Rodenburg,et al.  Ptychographic microscope for three-dimensional imaging. , 2014, Optics express.

[20]  J. Maria,et al.  Mechanisms for microstructure enhancement in flux-assisted growth of barium titanate on sapphire , 2014 .

[21]  Tim Dahmen,et al.  Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series , 2014, Microscopy and Microanalysis.

[22]  M Chi,et al.  Phase Transitions, Phase Coexistence, and Piezoelectric Switching Behavior in Highly Strained BiFeO3 Films , 2013, Advanced materials.

[23]  Amit Kumar,et al.  Interplay of Octahedral Tilts and Polar Order in BiFeO3 Films , 2013, Advanced materials.

[24]  Sergei V. Kalinin,et al.  Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. , 2012, Nature materials.

[25]  S. Pennycook,et al.  Prominent electrochromism through vacancy-order melting in a complex oxide , 2012, Nature Communications.

[26]  J. Rodenburg,et al.  Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging , 2012, Nature Communications.

[27]  Sergei V. Kalinin,et al.  Atomically Resolved Mapping of Polarization and Electric Fields Across Ferroelectric/Oxide Interfaces by Z‐contrast Imaging , 2011, Advanced materials.

[28]  Marin Alexe,et al.  Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3 , 2011, Science.

[29]  Yi Zhang,et al.  Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. , 2011, Nano letters.

[30]  Technology,et al.  Stress-inducedR−MA−MC−Tsymmetry changes in BiFeO3films , 2010, 1010.0254.

[31]  Stephen J. Pennycook,et al.  Scanning transmission electron microscopy : imaging and analysis , 2011 .

[32]  Sergei V. Kalinin,et al.  Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. , 2010, Physical review letters.

[33]  Sergei V. Kalinin,et al.  Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. , 2010, ACS nano.

[34]  P D Nellist,et al.  Aberration measurement using the Ronchigram contrast transfer function. , 2010, Ultramicroscopy.

[35]  Sergei V. Kalinin,et al.  Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. , 2010, Physical review letters.

[36]  H. Sawada,et al.  STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. , 2009, Journal of electron microscopy.

[37]  R. Ramesh,et al.  A Strain-Driven Morphotropic Phase Boundary in BiFeO3 , 2009, Science.

[38]  Stephen Jesse,et al.  Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy , 2009, Nanotechnology.

[39]  Michael Faley,et al.  Oxygen octahedron reconstruction in the SrTiO 3 /LaAlO 3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy , 2009 .

[40]  E A Kenik,et al.  Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Å Information Limit , 2008, Microscopy and Microanalysis.

[41]  S. Pennycook,et al.  CHAPTER 9 - Materials Applications of Aberration-Corrected Scanning Transmission Electron Microscopy , 2008 .

[42]  J. Rodenburg Ptychography and Related Diffractive Imaging Methods , 2008 .

[43]  Rainer Waser,et al.  Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. , 2007, Nature materials.

[44]  D. Alexander,et al.  Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. , 2006, Ultramicroscopy.

[45]  L. Allen,et al.  Letter to the Editor: Limitations to the Measurement of Oxygen Concentrations by HRTEM Imposed by Surface Roughness , 2005, Microscopy and Microanalysis.

[46]  P. Midgley,et al.  3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. , 2003, Ultramicroscopy.

[47]  R. Smalley,et al.  Comment on "Single Crystals of Single-Walled Carbon Nanotubes Formed by Self-Assembly" , 2003, Science.

[48]  Noël Bonnet,et al.  Artificial intelligence and pattern recognition techniques in microscope image processing and analysis , 2000 .

[49]  N. Bonnet,et al.  Multivariate statistical methods for the analysis of microscope image series: applications in materials science , 1998 .

[50]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .