A computer algebra toolbox for finding all stabilizing PID controllers

Although there are many methods for the calculation of all stabilizing PID controllers for a given linear time invariant system, this problem is still time-consuming. Moreover, if there is a time delay or uncertainty in the system, the problem gets more complex. The power of computer algebra tools can be utilized in finding all stabilizing PID controllers more quickly. In this paper, a toolbox written in Mathematica is introduced with this perspective.

[1]  H. T,et al.  The future of PID control , 2001 .

[2]  Shankar P. Bhattacharyya,et al.  Linear Control Theory , 2009 .

[3]  A. T. Shenton,et al.  Frequency-domain design of pid controllers for stable and unstable systems with time delay , 1997, Autom..

[4]  Neil Munro,et al.  Fast calculation of stabilizing PID controllers , 2003, Autom..

[5]  Naim Bajçinca Design of robust PID controllers using decoupling at singular frequencies , 2006, Autom..

[6]  J. Ackermann,et al.  Design of robust PID controllers , 2001, 2001 European Control Conference (ECC).

[7]  Mekki Ksouri,et al.  Computation of All Stabilizing PID Gain for Second-Order Delay System , 2009 .

[8]  Hirokazu Anai,et al.  A maple toolbox for parametric robust control system design using symbolic computation , 2009, 2009 ICCAS-SICE.

[9]  Norbert Hohenbichler,et al.  All stabilizing PID controllers for time delay systems , 2009, Autom..

[10]  Shankar P. Bhattacharyya,et al.  PID CONTROLLER SYNTHESIS FREE OF ANALYTICAL MODELS , 2005 .

[11]  Tore Hägglund,et al.  The future of PID control , 2000 .

[12]  Huang,et al.  Robust PID tuning strategy for uncertain plants based on the Kharitonov theorem , 2000, ISA transactions.

[13]  Shankar P. Bhattacharyya,et al.  PID Controllers for Time Delay Systems , 2004 .

[14]  Shankar P. Bhattacharyya,et al.  Robust and Non-fragile PID Controller Design , 2001 .

[15]  Shankar P. Bhattacharyya,et al.  PID stabilization of LTI plants with time-delay , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).