A computer algebra toolbox for finding all stabilizing PID controllers
暂无分享,去创建一个
[1] H. T,et al. The future of PID control , 2001 .
[2] Shankar P. Bhattacharyya,et al. Linear Control Theory , 2009 .
[3] A. T. Shenton,et al. Frequency-domain design of pid controllers for stable and unstable systems with time delay , 1997, Autom..
[4] Neil Munro,et al. Fast calculation of stabilizing PID controllers , 2003, Autom..
[5] Naim Bajçinca. Design of robust PID controllers using decoupling at singular frequencies , 2006, Autom..
[6] J. Ackermann,et al. Design of robust PID controllers , 2001, 2001 European Control Conference (ECC).
[7] Mekki Ksouri,et al. Computation of All Stabilizing PID Gain for Second-Order Delay System , 2009 .
[8] Hirokazu Anai,et al. A maple toolbox for parametric robust control system design using symbolic computation , 2009, 2009 ICCAS-SICE.
[9] Norbert Hohenbichler,et al. All stabilizing PID controllers for time delay systems , 2009, Autom..
[10] Shankar P. Bhattacharyya,et al. PID CONTROLLER SYNTHESIS FREE OF ANALYTICAL MODELS , 2005 .
[11] Tore Hägglund,et al. The future of PID control , 2000 .
[12] Huang,et al. Robust PID tuning strategy for uncertain plants based on the Kharitonov theorem , 2000, ISA transactions.
[13] Shankar P. Bhattacharyya,et al. PID Controllers for Time Delay Systems , 2004 .
[14] Shankar P. Bhattacharyya,et al. Robust and Non-fragile PID Controller Design , 2001 .
[15] Shankar P. Bhattacharyya,et al. PID stabilization of LTI plants with time-delay , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).