RADIATION BOUNDARY CONDITIONS FOR MAXWELL'S EQUATIONS: A REVIEW OF ACCURATE TIME-DOMAIN

A process for conditioning and compacting vegetable fodder prior to storage and shipment which comprises breaking standard-sized bales and adjusting the moisture level of the fodder to reduce pulverization during subsequent compacting and handling; while at the same time injecting mold inhibitors and nutritional additive before repackaging the fodder into more compact bales for shipment.

[1]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[2]  L. Greengard,et al.  Accelerating fast multipole methods for the Helmholtz equation at low frequencies , 1998 .

[3]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[4]  E. L. Hill The Theory of Vector Spherical Harmonics , 1954 .

[5]  R. Courant,et al.  Methoden der mathematischen Physik , .

[6]  Thomas Hagstrom,et al.  A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems , 2004 .

[7]  Dan Givoli,et al.  LOCAL HIGH-ORDER ABSORBING BOUNDARY CONDITIONS FOR TIME-DEPENDENT WAVES IN GUIDES , 2007 .

[8]  D. Givoli Non-reflecting boundary conditions , 1991 .

[9]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[10]  Marcus J. Grote,et al.  Nonreflecting Boundary Conditions for Maxwell's Equations , 1998 .

[11]  Jiming Song,et al.  Fast Illinois solver code (FISC) , 1998 .

[12]  A. Talbot The Accurate Numerical Inversion of Laplace Transforms , 1979 .

[13]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[14]  Long-time numerical computation of wave-type solutions driven by moving sources ✩ , 2001 .

[15]  Zhen-huan Teng,et al.  Exact boundary condition for time-dependent wave equation based on boundary integral , 2003 .

[16]  Murthy N. Guddati,et al.  On Optimal Finite-Difference Approximation of PML , 2003, SIAM J. Numer. Anal..

[17]  N. S. Barnett,et al.  Private communication , 1969 .

[18]  Patrick Joly,et al.  Mathematical Modelling and Numerical Analysis on the Analysis of B ´ Erenger's Perfectly Matched Layers for Maxwell's Equations , 2022 .

[19]  David Hoch,et al.  Nonreflecting Boundary Conditions Obtained From Equivalent Sources For Time-Dependent Scattering Problems , 2008 .

[20]  E. T. Copson,et al.  The mathematical theory of Huygens' principle , 1939 .

[21]  Reiji Suda,et al.  A fast spherical harmonics transform algorithm , 2002, Math. Comput..

[22]  Robert L. Higdon,et al.  Numerical absorbing boundary conditions for the wave equation , 1987 .

[23]  Ralf Hiptmair,et al.  Non-Reflecting Boundary Conditions for Maxwell’s Equations , 2003, Computing.

[24]  P. M. van den Berg,et al.  Absorbing boundary conditions and perfectly matched layers - an analytic time-domain performance analysis , 2002 .

[25]  Tobin A. Driscoll,et al.  Block Pseudospectral Methods for Maxwell's Equations II: Two-Dimensional, Discontinuous-Coefficient Case , 1999, SIAM J. Sci. Comput..

[26]  S. Gedney,et al.  On the long-time behavior of unsplit perfectly matched layers , 2004, IEEE Transactions on Antennas and Propagation.

[27]  R. Coifman,et al.  The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.

[28]  Gunilla Kreiss,et al.  Perfectly Matched Layers for Hyperbolic Systems: General Formulation, Well-posedness, and Stability , 2006, SIAM J. Appl. Math..

[29]  R. Newton Scattering theory of waves and particles , 1966 .

[30]  Semyon Tsynkov,et al.  Global discrete artificial boundary conditions for time-dependent wave propagation , 2001 .

[31]  K. Thorne Multipole expansions of gravitational radiation , 1980 .

[32]  Gang Bao,et al.  Convergence Analysis of the Perfectly Matched Layer Problemsfor Time-Harmonic Maxwell's Equations , 2005, SIAM J. Numer. Anal..

[33]  J. B. French,et al.  Theoretical nuclear physics , 1992 .

[34]  Dan Givoli,et al.  FINITE ELEMENT FORMULATION WITH HIGH-ORDER ABSORBING BOUNDARY CONDITIONS FOR TIME-DEPENDENT WAVES , 2006 .

[35]  E. L. Hill,et al.  The dirac electron theory , 1938 .

[36]  Thomas Hagstrom,et al.  A formulation of asymptotic and exact boundary conditions using local operators , 1998 .

[37]  Mingyu Lu,et al.  Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm , 2003 .

[38]  E. Heyman Time‐dependent plane‐wave spectrum representations for radiation from volume source distributions , 1996 .

[39]  Ivan Sofronov,et al.  Artificial boundary conditions of absolute transparency for two- and three-dimensional external time-dependent scattering problems , 1998, European Journal of Applied Mathematics.

[40]  Christian Lubich,et al.  Fast and Oblivious Convolution Quadrature , 2006, SIAM J. Sci. Comput..

[41]  Marcus J. Grote,et al.  Local nonreflecting boundary condition for Maxwell's equations , 2006 .

[42]  Patrick Joly,et al.  An Analysis of Higher Order Boundary Conditions for the Wave Equation , 2005, SIAM J. Appl. Math..

[43]  Melvin Schwartz,et al.  Principles of electrodynamics , 1972 .

[44]  John Archibald Wheeler,et al.  Stability of a Schwarzschild singularity , 1957 .

[45]  V. Ryaben'kii,et al.  Long-time numerical computation of wave-type solutions driven by moving sources ? ? This work was su , 2001 .

[46]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[47]  Marcus J. Grote,et al.  Nonreflecting Boundary Conditions for Time-Dependent Scattering , 1996 .

[48]  M. Guddati,et al.  Continued fraction absorbing boundary conditions for convex polygonal domains , 2006 .

[49]  L. Ting,et al.  Exact boundary conditions for scattering problems , 1986 .

[50]  L. Greengard,et al.  Nonreflecting Boundary Conditions for the Time-Dependent Wave Equation , 2002 .

[51]  Leslie Greengard,et al.  Rapid Evaluation of Nonreflecting Boundary Kernels for Time-Domain Wave Propagation , 2000, SIAM J. Numer. Anal..

[52]  Sailing He,et al.  Wave-splitting and absorbing boundary condition for Maxwell's equations on a curved surface , 1999 .

[53]  Ernst Hairer,et al.  FAST NUMERICAL SOLUTION OF NONLINEAR VOLTERRA CONVOLUTION EQUATIONS , 1985 .

[54]  Marcus J. Grote,et al.  Nonreflecting boundary condition for time-dependent multiple scattering , 2007, J. Comput. Phys..

[55]  Julien Diaz,et al.  A time domain analysis of PML models in acoustics , 2006 .

[56]  R. Higdon Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation , 1986 .

[57]  Norman Yarvin,et al.  Generalized Gaussian Quadratures and Singular Value Decompositions of Integral Operators , 1998, SIAM J. Sci. Comput..

[58]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[59]  Henry A. Warchall Wave propagation at computational domain boundaries , 1991 .

[60]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[61]  Thomas Hagstrom,et al.  New Results on Absorbing Layers and Radiation Boundary Conditions , 2003 .

[62]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[63]  E. Michielssen,et al.  Fast Evaluation of Three-Dimensional Transient Wave Fields Using Diagonal Translation Operators , 1998 .

[64]  Sean S. B. Moore,et al.  FFTs for the 2-Sphere-Improvements and Variations , 1996 .

[65]  Martin J. Mohlenkamp A fast transform for spherical harmonics , 1997 .

[66]  Semyon Tsynkov,et al.  On the application of lacunae-based methods to Maxwell's equations , 2004 .

[67]  Oscar P. Bruno,et al.  Fast, High-Order, High-Frequency Integral Methods for Computational Acoustics and Electromagnetics , 2003 .

[68]  Marcus J. Grote,et al.  Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation , 1995, SIAM J. Appl. Math..

[69]  Peter G. Petropoulos,et al.  Reflectionless Sponge Layers as Absorbing Boundary Conditions for the Numerical Solution of Maxwell Equations in Rectangular, Cylindrical, and Spherical Coordinates , 2000, SIAM J. Appl. Math..

[70]  Christian Lubich,et al.  Fast Convolution for Nonreflecting Boundary Conditions , 2002, SIAM J. Sci. Comput..

[71]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[72]  S. V,et al.  Global Discrete Artificial Boundary Conditions for Time-dependent Wave Propagation , 2022 .