Nonsingularity and Stationarity Results for Quasi-Variational Inequalities

The optimality system of a quasi-variational inequality can be reformulated as a non-smooth equation or a constrained equation with a smooth function. Both reformulations can be exploited by algorithms, and their convergence to solutions usually relies on the nonsingularity of the Jacobian, or the fact that the merit function has no nonoptimal stationary points. We prove new sufficient conditions for the absence of nonoptimal constrained or unconstrained stationary points that are weaker than some known ones. All these conditions exploit some properties of a certain matrix, but do not require the nonsingularity of the Jacobian. Further, we present new necessary and sufficient conditions for the nonsingularity of the Jacobian that are based on the signs of certain determinants. Additionally, we consider generalized Nash equilibrium problems that are a special class of quasi-variational inequalities. Exploiting their structure, we also prove some new sufficient conditions for stationarity and nonsingularity results.

[1]  Didier Aussel,et al.  Sufficient conditions to compute any solution of a quasivariational inequality via a variational inequality , 2017, Math. Methods Oper. Res..

[2]  Stefania Bellavia,et al.  STRSCNE: A Scaled Trust-Region Solver for Constrained Nonlinear Equations , 2004, Comput. Optim. Appl..

[3]  Yves Smeers,et al.  Spatial Oligopolistic Electricity Models with Cournot Generators and Regulated Transmission Prices , 1999, Oper. Res..

[4]  R. Selten,et al.  Game theory and evolutionary biology , 1994 .

[5]  Simone Sagratella,et al.  Algorithms for generalized potential games with mixed-integer variables , 2017, Comput. Optim. Appl..

[6]  Stefania Bellavia,et al.  An affine scaling trust-region approach to bound-constrained nonlinear systems , 2003 .

[7]  Andreas Fischer,et al.  A Globally Convergent LP-Newton Method , 2016, SIAM J. Optim..

[8]  Alexey F. Izmailov,et al.  On error bounds and Newton-type methods for generalized Nash equilibrium problems , 2014, Comput. Optim. Appl..

[9]  P. Bovy,et al.  Quasi-variational inequality formulation of the multiclass dynamic traffic assignment problem ☆ , 2003 .

[10]  Francisco Facchinei,et al.  The semismooth Newton method for the solution of quasi-variational inequalities , 2015, Comput. Optim. Appl..

[11]  Francisco Facchinei,et al.  Penalty Methods for the Solution of Generalized Nash Equilibrium Problems , 2010, SIAM J. Optim..

[12]  Gerard Debreu,et al.  A Social Equilibrium Existence Theorem* , 1952, Proceedings of the National Academy of Sciences.

[13]  Francisco Facchinei,et al.  On the solution of the KKT conditions of generalized Nash equilibrium problems , 2011, SIAM J. Optim..

[14]  Axel Dreves Uniqueness for Quasi-variational Inequalities , 2016 .

[15]  Marco Sciandrone,et al.  A nonmonotone trust-region method for generalized Nash equilibrium and related problems with strong convergence properties , 2018, Comput. Optim. Appl..

[16]  A. Bensoussan,et al.  Nouvelles Methodes en Contrôle Impulsionnel , 1975 .

[17]  Yurii Nesterov,et al.  Solving Strongly Monotone Variational and Quasi-Variational Inequalities , 2006 .

[18]  Francisco Facchinei,et al.  A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application , 2014, Comput. Optim. Appl..

[19]  Laura Scrimali,et al.  QUASI-VARIATIONAL INEQUALITIES IN TRANSPORTATION NETWORKS , 2004 .

[20]  Francisco Facchinei,et al.  Decomposition algorithms for generalized potential games , 2011, Comput. Optim. Appl..

[21]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[22]  U. Mosco Implicit variational problems and quasi variational inequalities , 1976 .

[23]  Francisco Facchinei,et al.  An LP-Newton method: nonsmooth equations, KKT systems, and nonisolated solutions , 2013, Mathematical Programming.

[24]  I. W. Sandberg,et al.  Some theorems on properties of DC equations of nonlinear networks , 1969 .

[25]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[26]  F. Facchinei,et al.  A Simply Constrained Optimization Reformulation of KKT Systems Arising from Variational Inequalities , 1999 .

[27]  Francisco Facchinei,et al.  Solving quasi-variational inequalities via their KKT conditions , 2014, Math. Program..

[28]  T. Ichiishi Game theory for economic analysis , 1983 .

[29]  Masao Fukushima,et al.  Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..

[30]  C. Baiocchi,et al.  Variational and quasivariational inequalities: Applications to free boundary problems , 1983 .

[31]  Christian Kanzow,et al.  Augmented Lagrangian and exact penalty methods for quasi-variational inequalities , 2018, Comput. Optim. Appl..

[32]  Vittorio Latorre,et al.  A canonical duality approach for the solution of affine quasi-variational inequalities , 2016, J. Glob. Optim..

[33]  Axel Dreves,et al.  Solving linear generalized Nash equilibrium problems numerically , 2016, Optim. Methods Softw..

[34]  A. Bensoussan Points de Nash Dans le Cas de Fonctionnelles Quadratiques et Jeux Differentiels lineaires a N Personnes , 1974 .

[35]  Christian Kanzow,et al.  On the multiplier-penalty-approach for quasi-variational inequalities , 2016, Math. Program..

[36]  M. Fukushima,et al.  On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .