Nonsingularity and Stationarity Results for Quasi-Variational Inequalities
暂无分享,去创建一个
[1] Didier Aussel,et al. Sufficient conditions to compute any solution of a quasivariational inequality via a variational inequality , 2017, Math. Methods Oper. Res..
[2] Stefania Bellavia,et al. STRSCNE: A Scaled Trust-Region Solver for Constrained Nonlinear Equations , 2004, Comput. Optim. Appl..
[3] Yves Smeers,et al. Spatial Oligopolistic Electricity Models with Cournot Generators and Regulated Transmission Prices , 1999, Oper. Res..
[4] R. Selten,et al. Game theory and evolutionary biology , 1994 .
[5] Simone Sagratella,et al. Algorithms for generalized potential games with mixed-integer variables , 2017, Comput. Optim. Appl..
[6] Stefania Bellavia,et al. An affine scaling trust-region approach to bound-constrained nonlinear systems , 2003 .
[7] Andreas Fischer,et al. A Globally Convergent LP-Newton Method , 2016, SIAM J. Optim..
[8] Alexey F. Izmailov,et al. On error bounds and Newton-type methods for generalized Nash equilibrium problems , 2014, Comput. Optim. Appl..
[9] P. Bovy,et al. Quasi-variational inequality formulation of the multiclass dynamic traffic assignment problem ☆ , 2003 .
[10] Francisco Facchinei,et al. The semismooth Newton method for the solution of quasi-variational inequalities , 2015, Comput. Optim. Appl..
[11] Francisco Facchinei,et al. Penalty Methods for the Solution of Generalized Nash Equilibrium Problems , 2010, SIAM J. Optim..
[12] Gerard Debreu,et al. A Social Equilibrium Existence Theorem* , 1952, Proceedings of the National Academy of Sciences.
[13] Francisco Facchinei,et al. On the solution of the KKT conditions of generalized Nash equilibrium problems , 2011, SIAM J. Optim..
[14] Axel Dreves. Uniqueness for Quasi-variational Inequalities , 2016 .
[15] Marco Sciandrone,et al. A nonmonotone trust-region method for generalized Nash equilibrium and related problems with strong convergence properties , 2018, Comput. Optim. Appl..
[16] A. Bensoussan,et al. Nouvelles Methodes en Contrôle Impulsionnel , 1975 .
[17] Yurii Nesterov,et al. Solving Strongly Monotone Variational and Quasi-Variational Inequalities , 2006 .
[18] Francisco Facchinei,et al. A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application , 2014, Comput. Optim. Appl..
[19] Laura Scrimali,et al. QUASI-VARIATIONAL INEQUALITIES IN TRANSPORTATION NETWORKS , 2004 .
[20] Francisco Facchinei,et al. Decomposition algorithms for generalized potential games , 2011, Comput. Optim. Appl..
[21] Olvi L. Mangasarian,et al. Nonlinear Programming , 1969 .
[22] U. Mosco. Implicit variational problems and quasi variational inequalities , 1976 .
[23] Francisco Facchinei,et al. An LP-Newton method: nonsmooth equations, KKT systems, and nonisolated solutions , 2013, Mathematical Programming.
[24] I. W. Sandberg,et al. Some theorems on properties of DC equations of nonlinear networks , 1969 .
[25] Richard W. Cottle,et al. Linear Complementarity Problem. , 1992 .
[26] F. Facchinei,et al. A Simply Constrained Optimization Reformulation of KKT Systems Arising from Variational Inequalities , 1999 .
[27] Francisco Facchinei,et al. Solving quasi-variational inequalities via their KKT conditions , 2014, Math. Program..
[28] T. Ichiishi. Game theory for economic analysis , 1983 .
[29] Masao Fukushima,et al. Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..
[30] C. Baiocchi,et al. Variational and quasivariational inequalities: Applications to free boundary problems , 1983 .
[31] Christian Kanzow,et al. Augmented Lagrangian and exact penalty methods for quasi-variational inequalities , 2018, Comput. Optim. Appl..
[32] Vittorio Latorre,et al. A canonical duality approach for the solution of affine quasi-variational inequalities , 2016, J. Glob. Optim..
[33] Axel Dreves,et al. Solving linear generalized Nash equilibrium problems numerically , 2016, Optim. Methods Softw..
[34] A. Bensoussan. Points de Nash Dans le Cas de Fonctionnelles Quadratiques et Jeux Differentiels lineaires a N Personnes , 1974 .
[35] Christian Kanzow,et al. On the multiplier-penalty-approach for quasi-variational inequalities , 2016, Math. Program..
[36] M. Fukushima,et al. On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .