Quantum experiments and graphs. III. High-dimensional and multiparticle entanglement

Quantum entanglement plays an important role in quantum information processes, such as quantum computation and quantum communication. Experiments in laboratories are unquestionably crucial to increase our understanding of quantum systems and inspire new insights into future applications. However, there are no general recipes for the creation of arbitrary quantum states with many particles entangled in high dimensions. Here, we exploit a recent connection between quantum experiments and graph theory and answer this question for a plethora of classes of entangled states. We find experimental setups for Greenberger-Horne-Zeilinger states, W states, general Dicke states, and asymmetrically high-dimensional multipartite entangled states. This result sheds light on the producibility of arbitrary quantum states using photonic technology with probabilistic pair sources and allows us to understand the underlying technological and fundamental properties of entanglement.

[1]  Mario Krenn,et al.  Entanglement by Path Identity. , 2016, Physical review letters.

[2]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[3]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[4]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[5]  A. J. Scott Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions , 2003, quant-ph/0310137.

[6]  Mario Krenn,et al.  Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings. , 2017, Physical review letters.

[7]  Marcus Huber,et al.  Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems , 2013, 1307.3541.

[8]  Marek Żukowski,et al.  Multisetting Greenberger-Horne-Zeilinger theorem , 2013, 1303.7222.

[9]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[10]  K. Życzkowski,et al.  Entanglement and quantum combinatorial designs , 2017, Physical Review A.

[11]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[12]  A. Zeilinger,et al.  Multi-photon entanglement in high dimensions , 2015, Nature Photonics.

[13]  Franson,et al.  Bell inequality for position and time. , 1989, Physical review letters.

[14]  Mario Krenn,et al.  Quantum experiments and graphs II: Quantum interference, computation, and state generation , 2018, Proceedings of the National Academy of Sciences.

[15]  G. Tóth,et al.  Experimental observation of four-photon entangled Dicke state with high fidelity. , 2006, Physical review letters.

[16]  Christian Kurtsiefer,et al.  Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.

[17]  Samuel L. Braunstein,et al.  Multipartite entanglement , 2002 .

[18]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[19]  M Paternostro,et al.  Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. , 2009, Physical review letters.

[20]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[21]  Jian-Wei Pan,et al.  12-Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion. , 2018, Physical review letters.

[22]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[23]  K. Życzkowski,et al.  Genuinely multipartite entangled states and orthogonal arrays , 2014, 1404.3586.

[24]  Mario Krenn,et al.  Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Jay Lawrence,et al.  Rotational covariance and Greenberger-Horne-Zeilinger theorems for three or more particles of any dimension , 2013, 1308.3808.

[26]  Noah Linden,et al.  A ug 2 01 3 Inequalities for the Ranks of Quantum States , 2014 .

[27]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[28]  Xuemei Gu,et al.  Questions on the Structure of Perfect Matchings Inspired by Quantum Physics , 2019, Proceedings of the 2nd Croatian Combinatorial Days.

[29]  Philippe Emplit,et al.  Frequency Bin Entangled Photons , 2009, 0910.1325.

[30]  Mario Krenn,et al.  Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits , 2018, Nature Photonics.

[31]  M. D. Dood,et al.  Observation of Four-Photon Orbital Angular Momentum Entanglement. , 2015, Physical review letters.

[32]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[33]  K. Życzkowski,et al.  Multipartite entanglement in heterogeneous systems , 2016, 1602.08064.

[34]  Marcus Huber,et al.  Structure of multidimensional entanglement in multipartite systems. , 2012, Physical review letters.

[35]  Matej Pivoluska,et al.  Layered quantum key distribution , 2017, 1709.00377.

[36]  Gert Sabidussi,et al.  Graph multiplication , 1959 .

[37]  Mario Krenn,et al.  Active learning machine learns to create new quantum experiments , 2017, Proceedings of the National Academy of Sciences.

[38]  A. Zeilinger,et al.  Higher-order quantum entanglement , 1992 .

[39]  Géza Tóth,et al.  Experimental entanglement of a six-photon symmetric Dicke state. , 2009, Physical review letters.

[40]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[41]  Jian-Wei Pan,et al.  18-Qubit Entanglement with Six Photons' Three Degrees of Freedom. , 2018, Physical review letters.

[42]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[43]  J. Latorre,et al.  Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices , 2015, 1506.08857.

[44]  Marijn A. M. Versteegh,et al.  Single pairs of time-bin-entangled photons , 2015, 1507.01876.

[45]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .