Structural Basis of Semantic Memory

Neuropsychological investigations have established that structures in the medial temporal lobes support acquisition of new facts, ideas, and concepts, and that this information is stored in neocortex. Cortical damage can result both in general disorders of conceptual information about objects and category-specific disorders, depending on the extent and location of damage. Functional neuroimaging evidence indicates that information about objects’ salient properties is stored in sensory and motor systems active when that information was acquired. As a result, long-term memory for different object categories is grounded in partially distinct, sensory, and motor property-based neural networks.

[1]  G. Rizzolatti,et al.  Grasping objects and grasping action meanings: the dual role of monkey rostroventral premotor cortex (area F5). , 1998, Novartis Foundation symposium.

[2]  T. Shallice,et al.  Category specific semantic impairments , 1984 .

[3]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[4]  Amanda Van Scoyoc,et al.  Fractionating the Left Frontal Response to Tools: Dissociable Effects of Motor Experience and Lexical Competition , 2006 .

[5]  Emer M. E. Forde,et al.  Category specific recognition impairments: a review of important case studies and influential theories , 1999 .

[6]  Uta Noppeney,et al.  Can segregation within the semantic system account for category-specific deficits? , 2002, Brain : a journal of neurology.

[7]  D G Gadian,et al.  Amnesia and the organization of the hippocampal system , 1998, Hippocampus.

[8]  Daniel L. Schacter,et al.  The ghosts of past and future: A memory that works by piecing together bits of the past may be better suited to simulating future events than one that is a store of perfect records. , 2007 .

[9]  M. Gazzaniga The new cognitive neurosciences, 2nd ed. , 2000 .

[10]  E. Warrington,et al.  THE SELECTIVE IMPAIRMENT OF FRUIT AND VEGETABLE KNOWLEDGE:AMULTIPLE PROCESSING CHANNELS ACCOUNT OF FINE-GRAIN CATEGORY SPECIFICITY , 2003, Cognitive neuropsychology.

[11]  L R Squire,et al.  On the acquisition of new declarative knowledge in amnesia. , 1995, Behavioral neuroscience.

[12]  Marinella Cappelletti,et al.  Dissociations in numerical abilities revealed by progressive cognitive decline in a patient with semantic dementia , 2005, Cognitive neuropsychology.

[13]  E. Tulving Episodic memory: from mind to brain. , 2002, Annual review of psychology.

[14]  S. Thompson-Schill Neuroimaging studies of semantic memory: inferring “how” from “where” , 2003, Neuropsychologia.

[15]  C J Price,et al.  HOW IS THE FUSIFORM GYRUS RELATED TO CATEGORY-SPECIFICITY? , 2003, Cognitive neuropsychology.

[16]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[17]  Leila Reddy,et al.  Coding of visual objects in the ventral stream , 2006, Current Opinion in Neurobiology.

[18]  Guy B. Williams,et al.  Dissociating person-specific from general semantic knowledge: roles of the left and right temporal lobes , 2004, Neuropsychologia.

[19]  Alex Martin,et al.  Experience-dependent modulation of category-related cortical activity. , 2002, Cerebral cortex.

[20]  C. Frith,et al.  Movement and Mind: A Functional Imaging Study of Perception and Interpretation of Complex Intentional Movement Patterns , 2000, NeuroImage.

[21]  Alfonso Caramazza,et al.  The interpretation of semantic category-specific deficits: What do they reveal about the organizatio , 1998 .

[22]  Alex Martin,et al.  Neural correlates of semantic and episodic memory retrieval , 1998, Neuropsychologia.

[23]  L. Squire,et al.  The anatomy of semantic knowledge: medial vs. lateral temporal lobe. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Brett,et al.  Large, colorful, or noisy? Attribute- and modality-specific activations during retrieval of perceptual attribute knowledge , 2001 .

[25]  Alison J. Wiggett,et al.  Patterns of fMRI Activity Dissociate Overlapping Functional Brain Areas that Respond to Biological Motion , 2006, Neuron.

[26]  E. Rolls,et al.  Representation of umami taste in the human brain. , 2003, Journal of neurophysiology.

[27]  N. Kanwisher,et al.  Mental Imagery of Faces and Places Activates Corresponding Stimulus-Specific Brain Regions , 2000, Journal of Cognitive Neuroscience.

[28]  J. Haxby,et al.  fMRI Responses to Video and Point-Light Displays of Moving Humans and Manipulable Objects , 2003, Journal of Cognitive Neuroscience.

[29]  Andreas Kleinschmidt,et al.  Interaction of Face and Voice Areas during Speaker Recognition , 2005, Journal of Cognitive Neuroscience.

[30]  G. Winocur,et al.  Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory , 2005, Journal of anatomy.

[31]  P. Downing,et al.  Selectivity for the human body in the fusiform gyrus. , 2005, Journal of neurophysiology.

[32]  I. Johnsrude,et al.  Somatotopic Representation of Action Words in Human Motor and Premotor Cortex , 2004, Neuron.

[33]  Cathy J. Price,et al.  Fusiform Activation to Animals is Driven by the Process, Not the Stimulus , 2005, Journal of Cognitive Neuroscience.

[34]  John Hart,et al.  Delineation of single‐word semantic comprehension deficits in aphasia, with anatomical correlation , 1990, Annals of neurology.

[35]  R. Blake,et al.  Brain Areas Active during Visual Perception of Biological Motion , 2002, Neuron.

[36]  B. Mesquita,et al.  Adjustment to Chronic Diseases and Terminal Illness Health Psychology : Psychological Adjustment to Chronic Disease , 2006 .

[37]  C. Frith,et al.  Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. , 2002, Brain : a journal of neurology.

[38]  P. Skudlarski,et al.  The role of the fusiform face area in social cognition: implications for the pathobiology of autism. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  N. Sadato,et al.  Naming of animals and tools: a functional magnetic resonance imaging study of categorical differences in the human brain areas commonly used for naming visually presented objects , 2000, Neuroscience Letters.

[40]  Eleanor Rosch,et al.  Principles of Categorization , 1978 .

[41]  J. Haxby,et al.  Parallel Visual Motion Processing Streams for Manipulable Objects and Human Movements , 2002, Neuron.

[42]  J R Hodges,et al.  Nonfluent progressive aphasia and semantic dementia: A comparative neuropsychological study , 1996, Journal of the International Neuropsychological Society.

[43]  Leslie G. Ungerleider,et al.  Discrete Cortical Regions Associated with Knowledge of Color and Knowledge of Action , 1995, Science.

[44]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[45]  W. K. Simmons,et al.  A common neural substrate for perceiving and knowing about color , 2007, Neuropsychologia.

[46]  Isabel Gauthier,et al.  Auditory and Action Semantic Features Activate Sensory-Specific Perceptual Brain Regions , 2003, Current Biology.

[47]  A. Shimamura,et al.  Letter and category fluency in patients with frontal lobe lesions. , 1998, Neuropsychology.

[48]  D. Neary,et al.  Semantic dementia: a form of circumscribed cerebral atrophy , 1995 .

[49]  Sharon L. Thompson-Schill,et al.  Conceptual Representations of Action in the Lateral Temporal Cortex , 2005, Journal of Cognitive Neuroscience.

[50]  Alex Martin,et al.  A neural system for learning about object function. , 2006, Cerebral cortex.

[51]  Vaidehi S. Natu,et al.  Category-Specific Cortical Activity Precedes Retrieval During Memory Search , 2005, Science.

[52]  A. Braun,et al.  Toward an evolutionary perspective on conceptual representation: species-specific calls activate visual and affective processing systems in the macaque. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[54]  E. Rolls,et al.  Representation of pleasant and aversive taste in the human brain. , 2001, Journal of neurophysiology.

[55]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[56]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[57]  Alex Martin,et al.  Cortical Regions Associated with Perceiving, Naming, and Knowing about Colors , 1999, Journal of Cognitive Neuroscience.

[58]  Irene P. Kan,et al.  Verb generation in patients with focal frontal lesions: a neuropsychological test of neuroimaging findings. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Daniel L. Schacter,et al.  Constructive memory: The ghosts of past and future , 2007, Nature.

[60]  Alex Martin,et al.  Representation of Manipulable Man-Made Objects in the Dorsal Stream , 2000, NeuroImage.

[61]  R. Blake,et al.  Brain activity evoked by inverted and imagined biological motion , 2001, Vision Research.

[62]  W. Schneider,et al.  Perceptual Knowledge Retrieval Activates Sensory Brain Regions , 2006, The Journal of Neuroscience.

[63]  H Chertkow,et al.  Dissociable brain regions process object meaning and object structure during picture naming , 2002, Neuropsychologia.

[64]  M. Verfaellie,et al.  Acquisition of novel semantic information in amnesia: effects of lesion location , 2000, Neuropsychologia.

[65]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[66]  E. Warrington,et al.  Categories of knowledge. Further fractionations and an attempted integration. , 1987, Brain : a journal of neurology.

[67]  Richard S. J. Frackowiak,et al.  A voxel‐based morphometry study of semantic dementia: Relationship between temporal lobe atrophy and semantic memory , 2000, Annals of neurology.

[68]  Randy L Buckner,et al.  Common and dissociable activation patterns associated with controlled semantic and phonological processing: evidence from FMRI adaptation. , 2005, Cerebral cortex.

[69]  P. Matthews,et al.  Category-related activation for written words in the posterior fusiform is task specific , 2005, Neuropsychologia.

[70]  Guy B. Williams,et al.  Neural correlates of semantic and behavioural deficits in frontotemporal dementia , 2005, NeuroImage.

[71]  Hanna Damasio,et al.  Naming the Same Entities from Visual or from Auditory Stimulation Engages Similar Regions of Left Inferotemporal Cortices , 2005, Journal of Cognitive Neuroscience.

[72]  Alex Martin,et al.  Functional Neuroimaging of Semantic Memory , 2001 .

[73]  R. Berndt,et al.  Category-specific naming deficit following cerebral infarction , 1985, Nature.

[74]  F. Heider,et al.  An experimental study of apparent behavior , 1944 .

[75]  D. Hassabis,et al.  Patients with hippocampal amnesia cannot imagine new experiences , 2007, Proceedings of the National Academy of Sciences.

[76]  Sarah H. Creem-Regehr,et al.  Neural representations of graspable objects: are tools special? , 2005, Brain research. Cognitive brain research.

[77]  J. Hodges,et al.  Disorders of semantic memory. , 1997, Journal of neurology, neurosurgery, and psychiatry.

[78]  Guido Gainotti,et al.  What the Locus of Brain Lesion Tells us About the Nature of the Cognitive Defect Underlying Category-Specific Disorders: A Review , 2000, Cortex.

[79]  M. Weiner,et al.  Cognition and anatomy in three variants of primary progressive aphasia , 2004, Annals of neurology.

[80]  Alex Martin,et al.  NEURAL FOUNDATIONS FOR UNDERSTANDING SOCIAL AND MECHANICAL CONCEPTS , 2003, Cognitive neuropsychology.

[81]  S. Dehaene,et al.  THREE PARIETAL CIRCUITS FOR NUMBER PROCESSING , 2003, Cognitive neuropsychology.

[82]  D J Brooks,et al.  Temporally‐specific retrograde amnesia in two cases of discrete bilateral hippocampal pathology , 1999, Hippocampus.

[83]  M. Brett,et al.  Actions Speak Louder Than Functions: The Importance of Manipulability and Action in Tool Representation , 2003, Journal of Cognitive Neuroscience.

[84]  J. H. Neely Semantic priming effects in visual word recognition: A selective review of current findings and theories. , 1991 .

[85]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[86]  Mieke Verfaellie,et al.  Recollection-based memory in frontotemporal dementia: implications for theories of long-term memory. , 2002, Brain : a journal of neurology.

[87]  S. Bookheimer Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. , 2002, Annual review of neuroscience.

[88]  W. K. Simmons,et al.  Pictures of appetizing foods activate gustatory cortices for taste and reward. , 2005, Cerebral cortex.

[89]  N. Cohen,et al.  The impaired learning of semantic knowledge following bilateral medial temporal-lobe resection , 1988, Brain and Cognition.

[90]  N. Kanwisher,et al.  How Distributed Is Visual Category Information in Human Occipito-Temporal Cortex? An fMRI Study , 2002, Neuron.

[91]  Suzanne Corkin,et al.  Semantic knowledge in patient H.M. and other patients with bilateral medial and lateral temporal lobe lesions , 2002, Hippocampus.

[92]  C. B. Cave,et al.  Intact and long-lasting repetition priming in amnesia. , 1992, Journal of experimental psychology. Learning, memory, and cognition.

[93]  Lawrence W. Barsalou,et al.  Perceptions of perceptual symbols , 1999, Behavioral and Brain Sciences.

[94]  L. Squire,et al.  Episodic memory, semantic memory, and amnesia , 1998, Hippocampus.

[95]  J. Hodges,et al.  Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. , 1992 .

[96]  T. Allison,et al.  Functional anatomy of biological motion perception in posterior temporal cortex: an FMRI study of eye, mouth and hand movements. , 2005, Cerebral cortex.

[97]  Ramona O Hopkins,et al.  Semantic Memory and the Human Hippocampus , 2003, Neuron.

[98]  Ken McRae,et al.  Category - Specific semantic deficits , 2008 .

[99]  E. Rolls,et al.  The representation of pleasant touch in the brain and its relationship with taste and olfactory areas. , 1999, Neuroreport.

[100]  Bradford Z. Mahon,et al.  CONSTRAINING QUESTIONS ABOUT THE ORGANISATION AND REPRESENTATION OF CONCEPTUAL KNOWLEDGE , 2003, Cognitive neuropsychology.

[101]  H. Damasio,et al.  Effects of noun–verb homonymy on the neural correlates of naming concrete entities and actions , 2005, Brain and Language.

[102]  E. Rolls,et al.  Abstract reward and punishment representations in the human orbitofrontal cortex , 2001, Nature Neuroscience.

[103]  L. Squire,et al.  Retrograde amnesia and memory consolidation: a neurobiological perspective , 1995, Current Opinion in Neurobiology.

[104]  Charles D. Smith,et al.  Dissociation of Automatic and Strategic Lexical-Semantics: Functional Magnetic Resonance Imaging Evidence for Differing Roles of Multiple Frontotemporal Regions , 2006, The Journal of Neuroscience.

[105]  E. Rolls,et al.  Taste‐olfactory convergence, and the representation of the pleasantness of flavour, in the human brain , 2003, The European journal of neuroscience.

[106]  N. Kanwisher,et al.  The fusiform face area: a cortical region specialized for the perception of faces , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[107]  E. Warrington Quarterly Journal of Experimental Psychology the Selective Impairment of Semantic Memory the Selective Impairment of Semantic Memory , 2022 .

[108]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[109]  Ronald Peeters,et al.  Knowledge of visual attributes in the right hemisphere , 2006, Nature Neuroscience.

[110]  Giuseppe Sartori,et al.  Semantic relevance explains category effects in medial fusiform gyri , 2006, NeuroImage.

[111]  R. Poldrack,et al.  Dissociable Controlled Retrieval and Generalized Selection Mechanisms in Ventrolateral Prefrontal Cortex , 2005, Neuron.

[112]  A. Caramazza,et al.  Domain-Specific Knowledge Systems in the Brain: The Animate-Inanimate Distinction , 1998, Journal of Cognitive Neuroscience.

[113]  A. Damasio,et al.  A neural basis for the retrieval of conceptual knowledge , 1997, Neuropsychologia.

[114]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[115]  D. Perrett,et al.  Responses of Anterior Superior Temporal Polysensory (STPa) Neurons to Biological Motion Stimuli , 1994, Journal of Cognitive Neuroscience.

[116]  Randolph Blake,et al.  Learning to See Biological Motion: Brain Activity Parallels Behavior , 2004, Journal of Cognitive Neuroscience.

[117]  Bradford Z. Mahon,et al.  The organization of conceptual knowledge: the evidence from category-specific semantic deficits , 2003, Trends in Cognitive Sciences.

[118]  Alex Martin,et al.  Semantic memory and the brain: structure and processes , 2001, Current Opinion in Neurobiology.

[119]  M. Mishkin,et al.  Differential effects of early hippocampal pathology on episodic and semantic memory. , 1997, Science.

[120]  M. D’Esposito,et al.  An Area within Human Ventral Cortex Sensitive to “Building” Stimuli Evidence and Implications , 1998, Neuron.

[121]  Michael S. Beauchamp,et al.  Automatic Priming of Semantically Related Words Reduces Activity in the Fusiform Gyrus , 2005, Journal of Cognitive Neuroscience.

[122]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[123]  Alex Martin,et al.  Word production and comprehension in Alzheimer's diseáse: The breakdown of semantic knowledge , 1983, Brain and Language.

[124]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[125]  M. Wallace,et al.  Visual Localization Ability Influences Cross-Modal Bias , 2003, Journal of Cognitive Neuroscience.

[126]  T. Allison,et al.  Temporal Cortex Activation in Humans Viewing Eye and Mouth Movements , 1998, The Journal of Neuroscience.

[127]  Karl J. Friston,et al.  Two distinct neural mechanisms for category-selective responses. , 2006, Cerebral cortex.

[128]  A. Caramazza,et al.  WHAT ARE THE FACTS OF SEMANTIC CATEGORY-SPECIFIC DEFICITS? A CRITICAL REVIEW OF THE CLINICAL EVIDENCE , 2003, Cognitive neuropsychology.

[129]  J R Hodges,et al.  Episodic memory: insights from semantic dementia. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.