A pre‐trained convolutional neural network based method for thyroid nodule diagnosis

[1]  Fa Wu,et al.  Flip-Rotate-Pooling Convolution and Split Dropout on Convolution Neural Networks for Image Classification , 2015, ArXiv.

[2]  Wei Shen,et al.  Multi-scale Convolutional Neural Networks for Lung Nodule Classification , 2015, IPMI.

[3]  Διονύσης Α. Κάβουρας,et al.  Morphological and wavelet features towards sonographic thyroid nodules evaluation , 2015 .

[4]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[5]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[6]  Georg Langs,et al.  Unsupervised Pre-training Across Image Domains Improves Lung Tissue Classification , 2014, MCV.

[7]  Agnieszka Witkowska,et al.  A Review on Ultrasound-Based Thyroid Cancer Tissue Characterization and Automated Classification , 2014, Technology in cancer research & treatment.

[8]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[9]  Luca Maria Gambardella,et al.  Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks , 2013, MICCAI.

[10]  Yann LeCun,et al.  Regularization of Neural Networks using DropConnect , 2013, ICML.

[11]  Anjan Biswas,et al.  Thyroid Nodule Recognition Based on Feature Selection and Pixel Classification Methods , 2013, Journal of Digital Imaging.

[12]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[13]  Luca Maria Gambardella,et al.  Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images , 2012, NIPS.

[14]  U. Rajendra Acharya,et al.  Automated benign & malignant thyroid lesion characterization and classification in 3D contrast-enhanced ultrasound , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[15]  Savita Gupta,et al.  Computer-Aided Diagnosis of Thyroid Nodule: A Review , 2012 .

[16]  U. Rajendra Acharya,et al.  ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform , 2012, Comput. Methods Programs Biomed..

[17]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[18]  U Rajendra Acharya,et al.  Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems. , 2012, Ultrasonics.

[19]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Nikita Singh,et al.  Ultra sonogram Images for Thyroid Segmentation and Texture Classification in Diagnosis of Malignant (Cancerous) or Benign (Non-Cancerous) Nodules , 2012 .

[21]  Honglak Lee,et al.  Unsupervised learning of hierarchical representations with convolutional deep belief networks , 2011, Commun. ACM.

[22]  Jianrui Ding,et al.  Quantitative Measurement for Thyroid Cancer Characterization Based on Elastography , 2011, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[23]  J. Suri,et al.  Cost-Effective and Non-Invasive Automated Benign & Malignant Thyroid Lesion Classification in 3D Contrast-Enhanced Ultrasound Using Combination of Wavelets and Textures: A Class of ThyroScan™ Algorithms , 2011, Technology in cancer research & treatment.

[24]  A. Pinchera,et al.  Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or nondiagnostic cytology. , 2010, The Journal of clinical endocrinology and metabolism.

[25]  Chuan-Yu Chang,et al.  Application of support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images , 2010, Pattern Recognit..

[26]  Yongmin Kim,et al.  Differential diagnosis of thyroid nodules with ultrasound elastography based on support vector machines , 2010, 2010 IEEE International Ultrasonics Symposium.

[27]  Jan Wolff,et al.  Real-time ultrasound elastography—a noninvasive diagnostic procedure for evaluating dominant thyroid nodules , 2010, Langenbeck's Archives of Surgery.

[28]  Gengsheng Qin,et al.  continuous-scale diagnostic test Comparison of non-parametric confidence intervals for the area under the ROC curve of a , 2010 .

[29]  J. Sipos,et al.  Advances in ultrasound for the diagnosis and management of thyroid cancer. , 2009, Thyroid : official journal of the American Thyroid Association.

[30]  Shuangge Ma,et al.  A birth cohort analysis of the incidence of papillary thyroid cancer in the United States, 1973-2004. , 2009, Thyroid : official journal of the American Thyroid Association.

[31]  Martha Pitman,et al.  Thyroid fine-needle aspiration biopsy: variability in reporting. , 2009, Thyroid : official journal of the American Thyroid Association.

[32]  Pascal Vincent,et al.  The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training , 2009, AISTATS.

[33]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[34]  Nikos Dimitropoulos,et al.  A hybrid multi-scale model for thyroid nodule boundary detection on ultrasound images , 2006, Comput. Methods Programs Biomed..

[35]  Kazutoshi Okamura,et al.  Quantitative analyses of sonographic images of the parotid gland in patients with Sjögren's syndrome. , 2006, Ultrasound in medicine & biology.

[36]  T. Teknos,et al.  Evaluation of the thyroid nodule. , 2006, Cancer control : journal of the Moffitt Cancer Center.

[37]  Chih-Jen Lin,et al.  Combining SVMs with Various Feature Selection Strategies , 2006, Feature Extraction.

[38]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[39]  Patrice Y. Simard,et al.  Best practices for convolutional neural networks applied to visual document analysis , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[40]  J. Strzelczyk The Essential Physics of Medical Imaging , 2003 .

[41]  Z. Baloch,et al.  Diagnosis of “follicular neoplasm”: A gray zone in thyroid fine‐needle aspiration cytology , 2002, Diagnostic cytopathology.

[42]  Thomas J. Downey,et al.  Using the receiver operating characteristic to asses the performance of neural classifiers , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[43]  Leen-Kiat Soh,et al.  Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices , 1999, IEEE Trans. Geosci. Remote. Sens..

[44]  Michal Strzelecki,et al.  Texture Analysis Methods - A Review , 1998 .

[45]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[46]  David Mackay,et al.  Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks , 1995 .

[47]  Geoffrey E. Hinton,et al.  Simplifying Neural Networks by Soft Weight-Sharing , 1992, Neural Computation.

[48]  F. S. Cohen,et al.  Classification of Rotated and Scaled Textured Images Using Gaussian Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Lawrence D. Jackel,et al.  Handwritten Digit Recognition with a Back-Propagation Network , 1989, NIPS.