Tissue-specific transcriptional programming of macrophages controls the microRNA transcriptome targeting multiple functional pathways

[1]  N. Steers,et al.  CD11c identifies microbiota and EGR2‐dependent MHCII+ serous cavity macrophages with sexually dimorphic fate in mice , 2022, European journal of immunology.

[2]  L. Hassman,et al.  Loss of Mir146b with aging contributes to inflammation and mitochondrial dysfunction in thioglycollate-elicited peritoneal macrophages , 2021, eLife.

[3]  Jason D. Buenrostro,et al.  A microRNA expression and regulatory element activity atlas of the mouse immune system , 2021, Nature Immunology.

[4]  C. Lutz,et al.  miR-708 Negatively Regulates TNFα/IL-1β Signaling by Suppressing NF-κB and Arachidonic Acid Pathways , 2021, Mediators of inflammation.

[5]  F. Watt,et al.  Contribution of GATA6 to homeostasis of the human upper pilosebaceous unit and acne pathogenesis , 2020, Nature Communications.

[6]  N. Batada,et al.  Rate of replenishment and microenvironment contribute to the sexually dimorphic phenotype and function of peritoneal macrophages , 2020, Science Immunology.

[7]  P. Taylor,et al.  Tissue‐resident macrophages actively suppress IL‐1beta release via a reactive prostanoid/IL‐10 pathway , 2020, The EMBO journal.

[8]  Yadong Zheng,et al.  Profiling of miRNAs in Mouse Peritoneal Macrophages Responding to Echinococcus multilocularis Infection , 2020, Frontiers in Cellular and Infection Microbiology.

[9]  Runan Yao,et al.  ShinyGO: a graphical gene-set enrichment tool for animals and plants , 2019, Bioinform..

[10]  Robert H. Jenkins,et al.  Effective In Vivo Gene Modification in Mouse Tissue-Resident Peritoneal Macrophages by Intraperitoneal Delivery of Lentiviral Vectors , 2019, Molecular therapy. Methods & clinical development.

[11]  W-T Li,et al.  MicroRNA-708-5p regulates mycobacterial vitality and the secretion of inflammatory factors in Mycobacterium tuberculosis-infected macrophages by targeting TLR4. , 2019, European review for medical and pharmacological sciences.

[12]  J. Kagan,et al.  Lipids that directly regulate innate immune signal transduction , 2019, Innate immunity.

[13]  Jing Wang,et al.  WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs , 2019, Nucleic Acids Res..

[14]  Ana Kozomara,et al.  miRBase: from microRNA sequences to function , 2018, Nucleic Acids Res..

[15]  C. Bain,et al.  The biology of serous cavity macrophages. , 2018, Cellular immunology.

[16]  Preeti Maurya,et al.  MicroRNA-99a mimics inhibit M1 macrophage phenotype and adipose tissue inflammation by targeting TNFα , 2018, Cellular & Molecular Immunology.

[17]  D. Bartel Metazoan MicroRNAs , 2018, Cell.

[18]  Rachel C. Bandler,et al.  microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis , 2017, Arteriosclerosis, thrombosis, and vascular biology.

[19]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[20]  M. Floer,et al.  The Lineage-Specific Transcription Factor PU.1 Prevents Polycomb-Mediated Heterochromatin Formation at Macrophage-Specific Genes , 2015, Molecular and Cellular Biology.

[21]  A. Dent,et al.  MicroRNA 21 Is a Homeostatic Regulator of Macrophage Polarization and Prevents Prostaglandin E2-Mediated M2 Generation , 2015, PloS one.

[22]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[23]  Yijie Zheng,et al.  miR-15a/16 Regulates Macrophage Phagocytosis after Bacterial Infection , 2014, The Journal of Immunology.

[24]  Maxim N. Artyomov,et al.  Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival , 2014, The Journal of experimental medicine.

[25]  P. Taylor,et al.  The Transcription Factor Gata6 Links Tissue Macrophage Phenotype and Proliferative Renewal , 2014, Science.

[26]  R. Medzhitov,et al.  Tissue-Specific Signals Control Reversible Program of Localization and Functional Polarization of Macrophages , 2014, Cell.

[27]  Julia A. Lasserre,et al.  PROmiRNA: a new miRNA promoter recognition method uncovers the complex regulation of intronic miRNAs , 2013, Genome Biology.

[28]  Yue Jiang,et al.  miR‐145 inhibits isoproterenol‐induced cardiomyocyte hypertrophy by targeting the expression and localization of GATA6 , 2013, FEBS letters.

[29]  Martin Reczko,et al.  DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows , 2013, Nucleic Acids Res..

[30]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[31]  R. Sachidanandam,et al.  High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries , 2012, Nature Methods.

[32]  P. Taylor,et al.  Development of myeloproliferative disease in 12/15-lipoxygenase deficiency. , 2012, Blood.

[33]  A. Hatzigeorgiou,et al.  Functional microRNA targets in protein coding sequences , 2012, Bioinform..

[34]  F. Rosenbauer,et al.  Macrophage development from HSCs requires PU.1-coordinated microRNA expression. , 2011, Blood.

[35]  Chun-Nan Hsu,et al.  Identification of homologous microRNAs in 56 animal genomes. , 2010, Genomics.

[36]  G. Nixon Sphingolipids in inflammation: pathological implications and potential therapeutic targets , 2009, British journal of pharmacology.

[37]  Dustin E. Schones,et al.  Chromatin poises miRNA- and protein-coding genes for expression. , 2009, Genome research.

[38]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[39]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[40]  L. Obeid,et al.  Dual and distinct roles for sphingosine kinase 1 and sphingosine 1 phosphate in the response to inflammatory stimuli in RAW macrophages. , 2008, Prostaglandins & other lipid mediators.

[41]  David Baltimore,et al.  MicroRNA-155 is induced during the macrophage inflammatory response , 2007, Proceedings of the National Academy of Sciences.

[42]  S. Duncan,et al.  Generation of mice harbouring a conditional loss-of-function allele of Gata6 , 2006, BMC Developmental Biology.

[43]  Kathryn L. Parsley,et al.  High-level transduction and gene expression in hematopoietic repopulating cells using a human imunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter , 2002 .

[44]  W. Reith,et al.  Conditional gene targeting in macrophages and granulocytes using LysMcre mice , 1999, Transgenic Research.

[45]  Luigi Naldini,et al.  Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo , 1997, Nature Biotechnology.

[46]  F. Gage,et al.  In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector , 1996, Science.

[47]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..