Implementation of the proposed reliability assurance strategy for an InGaAsp/InP, planar mesa, buried heterostructure laser operating at 1.3 µm for use in a submarine cable

We discuss the implementation of a strategy designed to provide laser-light-emitting reliability assurance for 1.3-μm InGaAsP/InP lasers of the planar mesa, buried heterostructure type for use in a submarine cable application. The testing regimes include initial characterization (cosmetic and light-current curve inspection), passive aging (elevated temperatures [85 to 175°C] without bias, with and without humidity [≤85-percent relative humidity]), overstress active aging (high temperatures [150°C], high currents [250 mAdc]), and long-term rate-monitoring active aging (elevated temperature [60°C] burn-in [3 mW/facet]). Overstress testing is designed to compel a timely (∼102-hour) identification of premature failures, due to modes of degradation other than the long-term ultimately controlling wear-out mode, and to stabilize transient modes. To identify premature failures of the wear-out type, survivors of overstressing are subjected to rate monitoring in which wear-out degradation rates, established in a reasonable time (∼103 hours), may be sorted. The principal results of the important overstress aging were the detection of an initially occurring saturable degradation mode, present to some extent in most lasers, and a regimen to force its rapid stabilization, so that it would not obscure determination of the activation energy of the wear-out mode. With a credibly determined value for the latter, it was deterministically inferred from rate-monitoring results that the light-emitting reliability of the screened lasers at ocean bottom temperatures (10°C) is more than adequate to meet the system design lifetime of 25 years.

[1]  M. Fukuda,et al.  Thermally accelerated degradation of 1.3 μm BH lasers , 1983 .

[2]  B. W. Hakki,et al.  1.3-µm Laser reliability determination for submarine cable systems , 1985, AT&T Technical Journal.

[3]  M. Morimoto,et al.  Accelerated facet degradation of InGaAsP/InP double-heterostructure lasers in water , 1982 .

[4]  C. Zipfel,et al.  Cathodoluminescence evaluation of dark spot defects in InP/InGaAsP light‐emitting diodes , 1982 .

[5]  T. Fujiwara,et al.  Aging characteristics of Ga1−xAlxAs double‐heterostructure lasers bonded with gold eutectic alloy solder , 1979 .

[6]  M. Abe,et al.  Degradation of high radiance InGaAsP/InP LEDs at 1.2-1.3µm wavelength , 1979, 1979 International Electron Devices Meeting.

[7]  M. Fukuda Facet oxidation of InGaAsP/InP and InGaAs/InP lasers , 1983 .

[8]  Mitsuo Fukuda,et al.  Dark defects in InGaAsP/InP double heterostructure lasers under accelerated aging , 1983 .

[9]  S. Tsuji,et al.  Accelerated Aging Characteristics of InGaAsP/InP Buried Heterostructure Lasers Emitting at 1.3 µm , 1980 .

[10]  Y. G. Chai,et al.  Performance characteristics and extended lifetime data for InGaAsP/InP LEDs , 1981 .

[11]  W. B. Joyce,et al.  Statistical characterization of the lifetimes of continuously operated (Al,Ga)As double‐heterostructure lasers , 1976 .

[12]  H. Dinges,et al.  Composition and refractive index of Ga1−xAlxAs determined by ellipsometry , 1979 .

[13]  W. B. Joyce,et al.  Electrical derivative characteristics of InGaAsP buried heterostructure lasers , 1982 .

[14]  M. Fukuda,et al.  Stress tests on 1.3 μm buried-heterostructure laser diode , 1983 .

[15]  Y. G. Chai,et al.  Performance characteristics and extended lifetime data for InGaAsP/InP LED's , 1981, IEEE Electron Device Letters.

[16]  S. Akiba,et al.  10 000-h continuous CW operation of In1-xGaxAsyP1-yInP DH lasers at room temperature , 1979, IEEE Journal of Quantum Electronics.

[17]  M. Ettenberg,et al.  Accelerated step-temperature aging of Al/x/Ga/1-x/As heterojunction laser diodes , 1978 .

[18]  E.I. Gordon,et al.  Purging: A reliability assurance technique for new technology semiconductor devices , 1983, IEEE Electron Device Letters.

[19]  Osamu Wada,et al.  Reliability of high radiance InGaAsP/InP LED́s operating in the 1.2-1.3 µm wavelength , 1981 .

[20]  W. Tsang,et al.  Reduced temperature dependence of threshold of (Al,Ga)As lasers grown by molecular beam epitaxy , 1981 .

[21]  N. Chinone,et al.  Effects of facet coatings on the degradation characteristics of GaAs‐Ga1−xAlxAs DH lasers , 1977 .

[22]  Masayuki Abe,et al.  Degradation of high‐radiance Ga1−xAlxAs LED’s , 1977 .

[23]  C. Hwang Initial degradation mode of long‐life (GaAl)As‐GaAs lasers , 1977 .

[24]  A. Rosenberg The oxidation of intermetallic compounds—III: The room-temperature oxidation of AIIIBv compounds☆ , 1960 .

[25]  F. Nash,et al.  Accelerated facet erosion formation and degradation of (Al, Ga)As double-heterostructure lasers , 1980, IEEE Journal of Quantum Electronics.

[26]  T. Paoli Nonlinearities in the emission characteristics of stripe-geometry (AlGa)As double-heterostructure junction lasers , 1976 .

[27]  S. Tsuji,et al.  Reliability of InGaAsP/InP Buried Heterostructure Lasers , 1981 .

[28]  Shinji Tsuji,et al.  Fabrication and characterization of narrow stripe InGaAsP/InP buried heterostructure lasers , 1980 .

[29]  T. Torikai,et al.  Mirror degradation in AlGaAs double‐heterostructure lasers , 1979 .

[30]  J. S. Bora,et al.  Simplification of base failure rate models , 1980 .

[31]  F. Lukes̆,et al.  Oxidation of Si and GaAs in air at room temperature , 1972 .

[32]  C. Zipfel,et al.  The migration of gold from the p-contact as a source of dark spot defects in InP/InGaAsP LED's , 1983, IEEE Transactions on Electron Devices.

[33]  Mitsuo Fukuda,et al.  Observation of Dark Defects Related to Degradation in InGaAsP/InP DH Lasers under Accelerated Operation , 1981 .

[34]  H. Nagai,et al.  Output power saturation of BH laser under high current operation , 1982 .

[35]  S. Tsuji,et al.  Reliability in InGaAsP/InP buried heterostructure 1.3 µm lasers , 1983, IEEE Journal of Quantum Electronics.

[36]  T. T. Sheng,et al.  Transmission electron microscopy of Au‐based Ohmic contacts to n‐AlxGa1−xAs , 1979 .

[37]  R. L. Hartman,et al.  Methodology of accelerated aging , 1985, AT&T Technical Journal.

[38]  C. Nuese,et al.  Reduced degradation in InxGa1−xAs electroluminescent diodes , 1975 .

[39]  M. Hansen,et al.  Constitution of Binary Alloys , 1958 .

[40]  C.L. Zipfel,et al.  Reliability of InGaAsP light emitting diodes at high current density , 1983, IEEE Transactions on Electron Devices.

[41]  R. L. Hartman,et al.  Selection of a laser reliability assurance strategy for a long-life application , 1985, AT&T Technical Journal.

[42]  D. S. Peck,et al.  The reliability of semiconductor devices in the bell system , 1974 .

[43]  Hajime Imai,et al.  Analysis of deterioration in In solder for GaAlAs DH lasers , 1979 .

[44]  B. Hakki,et al.  Catastrophic failure in GaAs double-heterostructure injection lasers , 1974 .

[45]  R. Dixon,et al.  Stabilization of aging‐induced self‐pulsations and the elimination of an initial temporally saturable mode of degradation in (Al,Ga)As lasers by means of facet coatings , 1979 .

[46]  H. Kawano,et al.  Rapid degradation of InGaAsP/InP double heterostructure lasers due to 〈110〉 dark line defect formation , 1982 .

[47]  B. Wakefield,et al.  The temperature dependence of degradation mechanisms in long‐lived (GaAl)As DH lasers , 1978 .

[48]  F. Reynolds Thermally accelerated aging of semiconductor components , 1974 .

[49]  Niloy K. Dutta,et al.  CW electrooptical properties of InGaAsP(λ = 1.3 µm) buried-heterostructure lasers , 1981 .

[50]  R. W. Dixon,et al.  Derivative measurements of light-current-voltage characteristics of (AL, GA)as double-heterostructure lasers , 1976, The Bell System Technical Journal.

[51]  M. Fukuda,et al.  Facet degradation and passivation of InGaAsP/InP lasers , 1982 .