Cryptographic D-morphic Analysis and Fast Implementations of Composited De Bruijn Sequences
暂无分享,去创建一个
[1] I. Good. Normal Recurring Decimals , 1946 .
[2] de Ng Dick Bruijn. A combinatorial problem , 1946 .
[3] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[4] James L. Massey,et al. Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.
[5] K. R. Dimond,et al. Nonlinear product-feedback shift registers , 1970 .
[6] Abraham Lempel,et al. On a Homomorphism of the de Bruijn Graph and its Applications to the Design of Feedback Shift Registers , 1970, IEEE Transactions on Computers.
[7] D. H. Green,et al. Some polynomial compositions of nonlinear feedback shift registers and their sequence-domain consequences , 1970 .
[8] Harold Fredricksen,et al. A Class of Nonlinear de Bruijn Cycles , 1975, J. Comb. Theory, Ser. A.
[9] K. Kjeldsen,et al. On the Cycle Structure of a Set of Nonlinear Shift Registers with Symmetric Feedback Functions , 1976, J. Comb. Theory, Ser. A.
[10] Solomon W. Golomb. On the classification of balanced binary sequences of period 2n-1 (Corresp.) , 1980, IEEE Trans. Inf. Theory.
[11] Solomon W. Golomb,et al. Shift Register Sequences , 1981 .
[12] Richard A. Games,et al. On the Complexities of de Bruijn Sequences , 1982, J. Comb. Theory, Ser. A.
[13] H. Fredricksen. A Survey of Full Length Nonlinear Shift Register Cycle Algorithms , 1982 .
[14] Tuvi Etzion,et al. Construction of de Bruijn sequences of minimal complexity , 1984, IEEE Trans. Inf. Theory.
[15] Richard A. Games,et al. On the quadratic spans of DeBruijn sequences , 1990, IEEE Trans. Inf. Theory.
[16] Cees J. A. Jansen,et al. An efficient algorithm for the generation of DeBruijn cycles , 1991, IEEE Trans. Inf. Theory.
[17] S. Golomb,et al. Characterizations of generators for modified de Bruijn sequences , 1992 .
[18] Fred S. Annexstein. Generating De Bruijn Sequences: An Efficient Implementation , 1997, IEEE Trans. Computers.
[19] Iickho Song,et al. An Efficient Implementation of the D-Homomorphism for Generation of de Bruijn Sequences , 1999, IEEE Trans. Inf. Theory.
[20] Amr M. Youssef,et al. Cryptographic properties of the Welch-Gong transformation sequence generators , 2002, IEEE Trans. Inf. Theory.
[21] Johanns MYmCELTWIT,et al. On the Cycle Structure of Some Nonlinear Shift Register Sequences , 2004 .
[22] Guang Gong,et al. Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar , 2005 .
[23] Guang Gong. Randomness and Representation of Span n Sequences , 2007, SSC.
[24] Janusz Szmidt,et al. Generation of nonlinear feedback shift registers with special-purpose hardware , 2012, 2012 Military Communications and Information Systems Conference (MCC).
[25] Guang Gong,et al. Cryptographically Strong de Bruijn Sequences with Large Periods , 2012, Selected Areas in Cryptography.
[26] Guang Gong,et al. Communication System Security , 2012 .
[27] K. Mandal,et al. Probabilistic Generation of Good Span n Sequences from Nonlinear Feedback Shift Registers , 2012 .