Iris segmentation using an edge detector based on fuzzy sets theory and cellular learning automata.

Iris-based biometric systems identify individuals based on the characteristics of their iris, since they are proven to remain unique for a long time. An iris recognition system includes four phases, the most important of which is preprocessing in which the iris segmentation is performed. The accuracy of an iris biometric system critically depends on the segmentation system. In this paper, an iris segmentation system using edge detection techniques and Hough transforms is presented. The newly proposed edge detection system enhances the performance of the segmentation in a way that it performs much more efficiently than the other conventional iris segmentation methods.

[1]  Sharath Pankanti,et al.  Biometrics: Personal Identification in Networked Society , 2013 .

[2]  John Daugman,et al.  How iris recognition works , 2002, IEEE Transactions on Circuits and Systems for Video Technology.

[3]  Hamid R. Tizhoosh,et al.  Fast fuzzy edge detection , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[4]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Michael F. Land,et al.  The Human Eye: Structure and Function , 1999, Nature Medicine.

[6]  Rishi Gupta,et al.  Iris Recognition System , 2010 .

[7]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  S M Ulam,et al.  Some ideas and prospects in biomathematics. , 1972, Annual review of biophysics and bioengineering.

[9]  John Daugman,et al.  Statistical Richness of Visual Phase Information: Update on Recognizing Persons by Iris Patterns , 2001, International Journal of Computer Vision.

[10]  Tieniu Tan,et al.  Improving iris recognition accuracy via cascaded classifiers , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[11]  Ashok A. Ghatol,et al.  Iris recognition: an emerging biometric technology , 2007 .

[12]  Mohammad Reza Meybodi,et al.  Open Synchronous Cellular Learning Automata , 2007, Adv. Complex Syst..

[13]  Luís A. Alexandre,et al.  UBIRIS: A Noisy Iris Image Database , 2005, ICIAP.

[14]  Kang Ryoung Park,et al.  A new iris segmentation method for non-ideal iris images , 2010, Image Vis. Comput..

[15]  Boualem Boashash,et al.  A human identification technique using images of the iris and wavelet transform , 1998, IEEE Trans. Signal Process..

[16]  Serafino Amoroso,et al.  Tessellation Structures for Reproduction of Arbitrary Patterns , 1971, J. Comput. Syst. Sci..

[17]  Jing Huang,et al.  A novel iris segmentation using radial-suppression edge detection , 2009, Signal Process..

[18]  Sharath Pankanti,et al.  Biometrics: Future of Identification , 2000 .

[19]  John Daugman,et al.  The importance of being random: statistical principles of iris recognition , 2003, Pattern Recognit..

[20]  J. Neumann The General and Logical Theory of Au-tomata , 1963 .

[21]  Dexin Zhang,et al.  Personal Identification Based on Iris Texture Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Olivier Strauss,et al.  Fuzzy edge detection for omnidirectional images , 2008, Fuzzy Sets Syst..

[23]  Sharath Pankanti,et al.  Biometrics: The Future of Identification - Guest Editors' Introduction , 2000, Computer.

[24]  Humberto Bustince,et al.  Interval-valued fuzzy sets constructed from matrices: Application to edge detection , 2009, Fuzzy Sets Syst..