On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations

On etudie le probleme aux valeurs initiales pour l'equation de Schrodinger non lineaire iΦ t +ΔΦ+|Φ| 2 σΦ=o, Φ:R x N ∈R t + →C, Φ(x,o)=Φ o (x)∈H 1 pour le cas critique σ=2/N

[1]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[2]  R. Glassey On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1977 .

[3]  C. V. Coffman Uniqueness of the ground state solution for Δu−u+u3=0 and a variational characterization of other solutions , 1972 .

[4]  P. Lions,et al.  Orbital stability of standing waves for some nonlinear Schrödinger equations , 1982 .

[5]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[6]  Pierre-Louis Lions,et al.  The concentration-compactness principle in the Calculus of Variations , 1985 .

[7]  Charles H. Townes,et al.  Self-trapping of optical beams , 1964 .

[8]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[9]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[10]  Catherine Sulem,et al.  Tracing complex singularities with spectral methods , 1983 .

[11]  Elliott H. Lieb,et al.  On the lowest eigenvalue of the Laplacian for the intersection of two domains , 1983 .

[12]  Elliott H. Lieb,et al.  Minimum action solutions of some vector field equations , 1984 .

[13]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, II existence of infinitely many solutions , 1983 .

[14]  Catherine Sulem,et al.  Numerical simulation of singular solutions to the two‐dimensional cubic schrödinger equation , 1984 .

[15]  Walter A. Strauss,et al.  Existence of solitary waves in higher dimensions , 1977 .

[16]  P. L. Kelley,et al.  Self-focusing of optical beams , 1965, International Quantum Electronics Conference, 2005..

[17]  J. Serrin,et al.  Uniqueness of solutions of semilinear Poisson equations. , 1981, Proceedings of the National Academy of Sciences of the United States of America.